Study of binary liquid capillary bridges stretched between two solid flat surfaces

    Mathematical Modeling, Vol. 6 (2022), Issue 1, pg(s) 13-16

    Liquid capillary bridges (CBs), created between two flat solid surfaces, parallel to each other, are of significant importance for number of scientific and industrial applications. In this paper, we present our experimental investigation of the liquid CBs at stretching, created by two immiscible liquids: cedar oil–water and paraffin-water with common interface. The behaviour of these binary structures was studied and compared with that of the single liquid CBs. It was found that the binary liquid CBs exist in the same definition domain as the single liquid CBs. Moreover, the current paper is focused not only on static, but also on non-equilibrium behaviour of CBs. We demonstrate that the binary liquid CBs can be engineered by the proper combination of polar (water) and non-polar (oil) fluids and these CBs exist within the theoretically predicted domain. The experimental results of water/cedar oil and water/paraffin binary CBs shows that the paraffin spreads in water surface and modifies the overall surface tension of the system, while the cedar oil and water retain their surface properties within the binary structure.