MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS
Study of binary liquid capillary bridges stretched between two solid flat surfaces
- 1 James Bourchier Blvd. Sofia 1164, Bulgaria
Abstract
Liquid capillary bridges (CBs), created between two flat solid surfaces, parallel to each other, are of significant importance for number of scientific and industrial applications. In this paper, we present our experimental investigation of the liquid CBs at stretching, created by two immiscible liquids: cedar oil–water and paraffin-water with common interface. The behaviour of these binary structures was studied and compared with that of the single liquid CBs. It was found that the binary liquid CBs exist in the same definition domain as the single liquid CBs. Moreover, the current paper is focused not only on static, but also on non-equilibrium behaviour of CBs. We demonstrate that the binary liquid CBs can be engineered by the proper combination of polar (water) and non-polar (oil) fluids and these CBs exist within the theoretically predicted domain. The experimental results of water/cedar oil and water/paraffin binary CBs shows that the paraffin spreads in water surface and modifies the overall surface tension of the system, while the cedar oil and water retain their surface properties within the binary structure.
Keywords
References
- C.-E. Delanay, J. Math. Pures Appl., 6, 309–314, (1841)
- Wikipedia contributors, Wikipedia, The Free Encyclopedia, [Accessed 9 Feb 2022] https://en.wikipedia.org/w/index.php?title=Djehutihotep&oldid=1066668282 (19 Jan 2022).
- F. B. Edwards, Weld J., 6, 321-324, (1972)
- A. Fall, B. Weber, M. Pakpour, N. Lenoir and N. Shahi, Phys. Rev. Lett, 112 (17), 175502 (2014)
- P. A. Kralchevsky and N. Denkov, Current Opinion in Colloid & Interface Science, 6, 383-401 (2001)
- S. J. W. Lord Rayleigh, Proc. Lond. Math., 10, 4-13 (1878).
- W. Hove, Dissertation, Berlin: Friendlich-Wilhelms Universitat zu Berlin , (1887)
- J. Meseguer and A. Sanz, J. Fluid Mech., 153, 83-101 (1985)
- I. Martínez and J. M. Perales, J. Cryst. Growth, 78 (2), 369-378 (1986)
- C. Tay-Yuan, J. A. Tsamopoulos and R. J. Good, J. Colloid Interface Sci., 151(1), 49-69 (1992)
- T. I. Vogel , SIAM J. Appl. Math. , 47, 516-525 (1987)
- T. I. Vogel, SIAM J. Appl. Math., 49, 1009–1028 (1989)
- R. Pitts, “The Stability of a Drop Hanging from a Tube,” IMA J Appl Math, vol. 17, no. 3, pp. 387-397, 1976.
- J. F. Padday and A. R. Pitt, Philos. Trans. Royal Soc. A, 275 (1253), 489-528 (1973)
- B. J. Lowry and P. H. Steen, Proc. R. Soc. A, 449 (1937), 411-415 (1995).
- P. V. Petkov and B. P. Radoev, Colloids and Interfaces, 3(4), 68 (2019)
- P. V. Petkov and B. Radoev, Colloids Surf. A: Physicochem. Eng. Asp., 460, 18-27 (2014)
- B. Radoev, I. T. Ivanov and P. V. Petkov, Colloids Surf. A: Physicochem. Eng. Asp., 505, 98-105 (2016)
- M. N. Princen, Surface and Colloid Science, 3, E. Matijievich, Ed., New York, Springer (1969)
- J. Plateau, Statique expérimentale et théorique des liquides soumis aux seulesforces moléculaires, Paris: Gauthier-Villars, 1873.
- P. Kralchevsky and K. Nagayama, Particles at Fluid Interfaces and Membranes, Amsterdam, Elsevier, 2001, pp. 469-502.
- C.-E. Delanay, “Sur la Surface de Révolution dont la Courbure Moyenne est Constante,” J. Math. Pures Appl., vol. 6, pp. 309-314, 1841.
- D. Balzer and H. Luders, Nonionic Surfactants: Alkyl Polyglucosides, vol. 1, New York: CRC Press, 2001.
- J. Am. Pharm. Assoc. 3 (7), 1013-1018 (1914)
- N. Masashi, K. Yuko, T. Toshihiro and Y. Takaiku, Colloids Surf. A: Physicochem. Eng. Asp., 603, 125250, 2020.
- C. Gögelein, M. Brinkmann, M. Schröter and S. Herminghaus, Langmuir, 26 (22),17184–17189 (2010)
- C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods, 9 (7), 671–675 (2012)