Modification of the properties of nanocomposites based on carbon nanostructures

  • 1 G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine


The electrical and mechanical properties of nanocomposites based on carbon nanostructures has been studied. It is sown that a t a concentration of carbon nanotubes of 15-30 wt. %, the electrical resistance of the samples decreases to 1 order, while its mechanical properties change insignificantly, which is due to the transfer of free electrons from the metal to the CNT, which is comparable to the number of electrical contacts between the constituent elements of the composite and the competition between the numbers of tu nneling and ohmic contacts.



  1. Yao Zh., Postma H. W. Ch., Balents L., Dekker C., Imaging and Characterization of Molecules and One- Dimensional Crystals Formed within Carbon Nanotubes Nature, V. 402. 1999.P. 273.
  2. Curran S. A., Talla J., Dias S., Zhang D.,Carroll D. Electrical transport measurements of highly conductive carbon nanotube / poly (bisphenol A carbonate) composite J. Appl. Phys.V. 105. 2009. P. 073711.
  3. Ahmad K., Pan W., Shi S. L. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites Appl. Phys. Lett.V. 89. 2006.P. 133122.
  4. Sandler J. K. W., Kirk J. E., Kinloch I. A., Shaffer M. S. P., Windle A. H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites Polymer.V. 44. 2003. P. 5893.
  5. Bryning M. B., Islam M. F., Kikkawa J. M., Yodh A. G. Very Low Conductivity Threshold in Bulk Isotropic Single ‐ Walled Carbon Nanotube – Epoxy Composites Adv. Mater.V. 17. 2005. P. 1186.
  6. Kymakis E., Alexandou I., Amaratunga G. A. Electrical Properties of Soluble Carbon Nanotube / Polymer Composite Films Synthetic Metals.V. 127. 2002. P. 59.
  7. Sundaram R. M., Sekiguchi A., Sekiya M., Yamada T., Hata K. R. Copper / carbon nanotube composites: research trends and outlook Soc. Open Sci.V. 5.Iss. 11. 2018. P. 180814.
  8. Collins P. G. Extreme oxygen sensitivity of electronic properties of carbon nanotubes Science.V. 287. 2000. P. 1801.
  9. Li Guo‐ ran, Wang Feng, Jiang Qi‐ wei, Gao Xue‐ ping, Shen Pan‐ wen. Carbon Dioxide Capture by Superbase-Derived Protic Ionic Liquids Carbon, Advantante Chemie.V. 49. 2010.P. 3653.
  10. Nishchenko M.M., Mykhailova H.Yu., Arkhipov E.I., Koda V.Yu., Prikhodko G.P., Sementsov Yu.I. Electrical conductivity of an array of multilayer carbon nanotubes during compression deformation Metallofizika i Noveishie Tekhnologii. T. 31. № 4. 2009.P. 437.
  11. Mikhailova G.Yu., Nishchenko M.M., Pimenov V.N.,Starostin E.E., Tovtin V.I. Thermoelectric and Elastic Properties of Carbon Nanotubes Irradiated with High-Energy Electrons InorganicMater.: Appl. Res.V. 10.No. 5. 2019.P. 1052.
  12. Nishchenko M.M., Mikhailova G.Yu., Kovalchuk B.V., Sidorchenko I.M., Anikeev V.V., Shevchenko N.A., Poroshin V.M., Prikhodko G.P. Thermoelectric Properties of an Array of Carbon Nanotubes under Uniaxial Compression after Annealing Metallofizika i Noveishie Tekhnologii. T. 40. № 2. 2018.P. 169.
  13. Zhang S., Ji Ch., Bian Zh., Liu R., Xia X., Yun D., Zhang L., Huang Ch., Cao A. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes NanoLett. V. 11. (2011).P. 3383.
  14. Mavrinsky A.V., Andriychuk V.P., Baitinger E.M. Thermoelectromotive force of powdered tubulens // News of the Chelyabinsk Scientific Center. - 2002. - No. 3. - P. 16-20.

Article full text

Download PDF