Quantum Cone – Nano Source of Light with Dispersive Spectrum Distributed Along Height
- 1 Riga Technical University, Latvia.
Abstract
A quantum cone is a structure consisting of a large number of quantum dots with a gradually decreasing diameter from the base to the top of the cone. This distribution of quantum dots leads to a dispersive radiated spectrum. The red edge of the spectrum is determined by the band gap of the bulk semiconductor, and the blue edge by the quantum confinement of excitons on top of the cones. We observe the kinetics of photoluminescence, obeying the stretched exponential law, from quantum cones formed on the surface of DLC. They are explained by an increase in the lifetime of excitons along the height of the cone from the top to the base of the cone and an increasing concentration of excitons at the base due to their drift in the quasi-built-in electric field of the quantum cone. Such time dependence of the photoluminescence spectrum gives the possibility of its discrimination spectrum on time. The possible visualization of the quantum cones of DLC using irradiation by a UV light source is shown. A quantum cone is a new type of nano light source, as it replaces two elements in a conventional spectrometer – a light source and a dispersive element: an ultra-fast monochromator. These features will make it possible to build a spectrometer to measure the absorption spectrum of individual nanoparticles or viruses.
Keywords
References
- L.E. Brus, J. Chem. Phys. 80 (1984) 4403-4444, https://doi.org/10.1063/1.447218
- A. Medvid, Y. Fukuda, A. Michko, P. Onufrievs, Y. Anma, Appl. Surf. Sci. 244 (2005) 120-123.
- A. Medvid, I. Dmytruk, P. Onufrijevs, I. Pundyk, Phys. Stat. Sol. C 4 (2007) 3066–3069.
- A. Medvid, A. Mychko, V. Gnatyuk, S. Levytskyi, Y. Naseka, Opt. Mater. 32 (2010) 836-839.
- A. Medvid, I. Dmitruk, P. Onufrijevs, I. Pundyk, Diffusion and Defect Data Pt. B: Solid State Phenomena 131 (2008) 559-562.
- A. Medvid, P. Onufrijevs “Properties of nanocones formed on a surface of semiconductors by laser radiation: QC effect of electrons, phonons, and excitons.” Nanoscale Res. Lett., 6 (2011) 582-528.
- A. Medvids, A. Mychko, P. Onufrijevs, E. Dauksta "Application of Nd:YAG laser in semiconductors nanotechnology", Ed. Dan Dumitras, INTECH (2012), https://doi.org/10.5772/37093
- T. Takahahara and K. Takeda, Physical Review B 46 (1992) 15578-15581.
- J. Li, Lin-Wang, Chem. Mater. 16 (2004) 4012-4015, https://doi.org/10.1021/cm0494958
- A. Evtuh, A. Medvids, P. Onufrijevs, M. Okada, H. Mimura, J. Vac, Sci, Technol. 2 (2010) C2B11-C2B13.
- J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu. Q. Zhang. Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan and A. Pan, Sci. Rep. 2 (2012).
- A. Asgari, S. Asadzadeh, J. Phys.: Conf. Ser. 248 (2010) 012020, https://doi.org/10.1088/1742-6596/248/1/012020
- C. Carra, A. Medvids, D. Litvinas, P. Ščajev, T. Malinauskas, A. Selskis, E. Hector, K. Bazaka, I. Levchenko, C. Riccardi, ACS Applied Nano Materials 5 (2022) 4787 – 4800.
- W. Deng, J. Zou, X. Peng, J. Zhang, W. Wang, Y. Zhang, and D. Zhang, Opt. Express, 24 (2016) 24347-24360
- G. Zatryb, A. Podhorodecki, J. Misiewicz, J. Cardin , F. Gourbilleau, Nanoscale Res. Lett. 6 (2011) 106- 110.
- Misaki Tanaka, Yuka Sato, and Prabhat Verma “White nanolight source for optical nanoimaging”, SCIENCE ADVANCES, 3 (2020) 100-108.
- You-Shin No, “Electrically Driven Micro- and Nano-Scale Semiconductor Light Source” Appl. Sci. 2019, 9(4), 802-808.