MATERIALS

Anatase or Rutile TiO2 Nanolayer Formation on Ti Substrates by Laser Radiation: Mechanical and Photocatalytic Properties

  • 1 Riga Technical University, Paula Valdena, Latvia
  • 2 Riga Technical University, Latvia
  • 3 Institute of Semiconductor Physics, Academy of Science Ukrainian, Kiiv, Ukraine

Abstract

A laser-induced oxidation method for the formation of a TiO2 layer on a Ti substrate was used. The TiO2 phase can be controlled by an Nd:YAG laser with fundamental frequency at an intensity I = 52.8 MW/cm2 and three different doses. Dose D1 = 3.1×1020 phot/cm2 forms a TiO2 layer in the anatase phase, which possesses the highest photocatalytic, antibacterial and adhesion properties. As the laser dose increases, the TiO2 layer thickness increases from 40 nm to 100 nm, but the photocatalytic decomposition reaction constant decreases. The observed super-linear increase of the TiO2 layer thickness with the laser dose is explained by the presence of positive feedback during the irradiation process. The temperature rises with increasing of the thickness due to the interference-caused decrease of the reflection coefficient. As the thickness increases, TiO2 on Ti structure adhesion decreases from 800 mN to 400 mN due to the formation of a layer with a mixture of phases.

Keywords

References

  1. A. Kozlovskiy, M. Zdorovets , Journal of Nanostructure in Chemistry (2020) 10(4) pp.331-346.
  2. E.Deionno, M. Looper, IEEE Aerospace Conference Proceedings (2013) pp.15-17.
  3. P.-I. Branemark, J. Prosthet. Dent., 50 (3) (1983), pp. 399-410,
  4. P.I. Brånemark, B.O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallén, A. Ohman. Scand. J. Plast. Reconstr. Surg., Suppl. 16 (1977), pp. 1-132.
  5. B. Liang, S. Fujibayashi, M. Neo, J. Tamura, H.M. Kim, M. Uchida, T. Kokubo, T. Nakamura, .Biomaterials., 24 (27) (2003), pp. 4959-4966.
  6. C.M. Lin, K. Yen. Mater. Sci. Eng. C., 26 (1) (2006), pp. 54-64.
  7. X.-F. Yang, Y. Chen, F. Yang, F.-M. He, S.-F. Zhao. Dent. Mater., 25 (4) (2009), pp. 473-480.
  8. A. Fujishima, T.N. Rao, D.A. Tryk. J. Photochem. Photobiol. C Photochem. Rev., 1 (1) (2000), pp. 1-21.
  9. D.A.H. Hanaor, C.C. Sorrell. J. Mater. Sci., 46 (4) (2011), pp. 855-874.
  10. X. Cui, H. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, T. Nakamura. Dent. Mater., 25 (1) (2009), pp. 80-86.
  11. T. Kawahara, T. Ozawa, M. Iwasaki, H. Tada, S. Ito J. Colloid Interface Sci., 267 (2) (2003), pp. 377-381.
  12. T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, S. Ito. J. Colloid Interface Sci., 281 (2) (2005), pp. 510-513.
  13. H. Dong, X.Y. Li. Mater. Sci. Eng. A. 280 (2000),pp.303–310.
  14. T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, S. Suib. Molecules., 21 (2016), pp. 900-920.
  15. S. Varnagiris, A. Medvids, M. Lelis, D. Milcius, A. Antuzevics. J. Photochem. Photobiol. A Chem., 382 (2019), p. 111941.
  16. Z.S. Hosseini, M. Shasti, S. Ramezani Sani, A. Mortezaali, J. Appl. Phys., 119 (1) (2016), p. 014503.
  17. C. Zhu, C. Lv, C. Wang, Y. Sha, D. Li, X. Ma, D. Yang. Opt. Express., 23 (3) (2015), p. 2819.
  18. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill. Sci. Rep., 4 (1) (2015), pp.123-128.
  19. M.H. Samat, A.M.M. Ali, M.F.M. Taib, O.H. Hassan, M.Z.A. Yahya. Results Phys., 6 (2016), pp. 891-896.
  20. Y. Yamada, Y. Kanemitsu. Appl. Phys. Lett., 101 (13) (2012), p. 133907.
  21. C. Hammerl, B. Renner, B. Rauschenbach, W. Assmann. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms., 148 (1-4) (1999), pp. 851-857.
  22. E.J.D.M. Pillaca, M. Ueda, K.G. Kostov, H. Reuther. Appl. Surf. Sci., 258 (24) (2012), pp. 9564-9569.
  23. E. Dauksta, A. Medvids, P. Onufrijevs, M. Shimomura, Y. Fukuda, K. Murakami. Curr. Appl. Phys., 19 (3) (2019), pp. 351- 355.
  24. J. Chen, L.-B. Lin, F.-Q. Jing. J. Phys. Chem. Solids., 62 (7) (2001), pp. 1257-1262.
  25. X. Chen, D. Zhao, K. Liu, C. Wang, L. Liu, B. Li, Z. Zhang, D. Shen. ACS Appl. Mater. Interfaces., 7 (29) (2015), pp. 16070- 16077.
  26. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma. Appl. Surf. Sci., 253 (18) (2007), pp. 7497-7500.
  27. C.-K. Chung, S.L. Lin, K.P. Chuang, S.Y. Cheng, K.Y. Shei. Micro Nano Lett., 7 (8) (2012), pp. 701-705.
  28. M. Jing, R. Hong, W. Shao, H. Lin, D. Zhang, S. Zhuang, D. Zhang. Opt. Express., 25 (2017), pp. 2377-2382.
  29. A. Singh, J. Vihinen, E. Frankberg, L. Hyvärinen, M. Honkanen, E. Levänen. Nanoscale Res. Lett., 11 (2016), pp. 1-9.
  30. V.A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S. Sharma Kanakkillam, D.A. Avellaneda, J.A.A. Martinez, T.K. DasRoy, N.A. Ramos-Delgado. Appl. Surf. Sci., 483 (2019), pp. 156-164.
  31. S. Filice, G. Compagnini, R. Fiorenza, S. Scirè, L. D’Urso, M.E. Fragalà, P. Russo, E. Fazio, S. Scalese. J. Colloid Interface Sci., 489 (2017), pp. 131-137.
  32. J. Zhang, P. Zhou, J. Liu, J. Yu. Phys. Chem. Chem. Phys., 16 (38) (2014), pp. 20382-20386.
  33. M. Sawczak, M. Górski, H. Rachubiński, A. Cenian, Laser Technol. 2012 Appl. Lasers. 8703 (2013) 87030M.
  34. H. Rath, S. Anand, M. Mohapatra, P. Dash, T. Som, U.P. Singh, N.C. Mishra, D. Kanjilal, D.K. Avasthi, S.M. Bose, S.N. Behera, B.K. Roul. AIP Conf. Proc., AIP (2008), pp. 250-255.
  35. G. Cacciato, M. Zimbone, F. Ruffino, V. Privitera, M.G. Grimaldi. Phys. Status Solidi Basic Res., 254 (7) (2017), p. 1600835.
  36. G. Cacciato, M. Zimbone, F. Ruffino, V. Privitera, M.G. Grimaldi. Phys. Status Solidi Basic Res., 254 (7) (2017), p. 1600835.
  37. M. Zimbone, G. Cacciato, R. Sanz, R. Carles, A. Gulino, V. Privitera, M.G. Grimaldi. Catal. Commun., 84 (2016), pp. 11-15.
  38. S. Mändl, G. Thorwarth, M. Schreck. Surf. Coatings Technol., 125 (2000), pp. 84-88.
  39. M. Malekshahi, Byranvand, A. Nemati, Kharat, L. Fatholahi, Z. Malekshahi Beiranvand. J. Nanostructures., 3 (2013), pp. 1-9.
  40. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen.
  41. J. Phys. D Appl. Phys., 33 (8) (2000), pp. 912-916.
  42. H. Schmalzried, A.T. Fromhold,. North Holland Publishing Co. 1976. 547 Seiten, Berichte Der Bunsengesellschaft Für Phys. Chemie. 81 (1977) 353–354.

Article full text

Download PDF