TECHNOLOGIES

Application of HHO Gas for Effective Sterilization in Plasma-based Ion Implantation

  • 1 Hiroshima Institute of Technology, Hiroshima, Japan
  • 2 Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

Plasma-based ion implantation (PBII) is a surface modification technique that applies a negative high-voltage pulse to a sample immersed in plasma. PBII is suitable for samples with complex geometries, as its ion sheath conforms to the sample’s shape, ensuring uniform ion implantation. Due to its precise controllability, PBII is widely used industrially for surface modification and has promising applications for sterilization. We previously used PBII with oxygen gas to successfully sterilize heat-resistant spore. Here, we evaluated the use of PBII with HHO as the process gas for sterilization. Sterilization exceeding 7D was achieved at 10 min and 3 Pa. The enhancement of the sterilization efficacy was attributed to the synergistic effect of plasma and thermal energy, which emerged as a consequence of a temperature increase exceeding 100°C due to adjustments in pulse width and delay time. These results indicate the possibility for temperature control in PBII technology, which has potential application in sterilization processes.

Keywords

References

  1. P.T. Jacobs, S.-M. Lin, in: R.L. Clough, S.W. Shalaby (Eds.), Irradiation of polymers : fundamentals and technological applications, American Chemical Society, Washington, DC, pp. 216–239 (1996)
  2. K. Kelly-Wintenberg, A. Hodge, T.C. Montie, L. Deleanu, D. Sherman, J. Reece Roth, P. Tsai, L. Wadsworth, J. Vac. Sci. Technol. A, 17, 1539–1544 (1999)
  3. S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, L.H. Yahia, J. Appl. Phys., 88, 1166–1174 (2000)
  4. M. Yoshida, T. Tanaka, S. Watanabe, T. Takagi, M. Shinohara, S. Fujii, J. Vac. Sci. Technol. A, 21, 1230–1236 (2003)
  5. S. Mandl, R. Sader, G. Thorwarth, D. Krause, H.F. Zeilhofer, H.H. Horch, B. Rauschenbach, Biomol Eng, 19, 129–132 (2002)
  6. S. Han, Y. Lee, H. Kim, G.-h. Kim, J. Lee, J.-H. Yoon, G. Kim, Surf. Coat. Technol., 93, 261–264 (1997)
  7. D.R. McKenzie, K. Newton-McGee, P. Ruch, M.M. Bilek, B.K. Gan, Surf. Coat. Technol., 186, 239–244 (2004)
  8. N. Fujimura, K. Shimono, M. Kubo, H. Noguchi, H. Toyota, K. Kakugawa, T. Tanaka, IEEJ Trans. FM, 135, 373–378 (2015)
  9. M. Hiyama, K. Kakugawa, A. Yakushiji, K. Watanabe, R. Matsuda, Y. Tsuchiya, T. Tanaka, E+E, 53, 199–203 (2018)
  10. S. Umemoto, K. Kakugawa, K. Nosaki, T. Noda, T. Tanaka, K. Vutova, E+E, 57, 46–50 (2022)
  11. K. Kakugawa, S. Umemoto, T. Noda, K. Nosaki, T. Tanaka, K. Vutova, E+E, 57, 41–45 (2022)
  12. T. Koshikawa, M. Yamazaki, M. Yoshimi, S. Ogawa, A. Yamada, K. Watabe, M. Torii, J. Gen. Microbiol., 135, 2717– 2722 (1989)
  13. T. Koshikawa, K. Sone, T. Kobayashi, Radioisotopes, 42, 614– 623 (1993)
  14. T. Koshikawa, Radioisotopes, 43, 710–717 (1994)

Article full text

Download PDF