Unified Framework for PdM Algorithm Development: The pdm-tools Architecture
This paper proposes a novel architecture for pdm-tools, a dedicated library designed to streamline the development process of predictive maintenance (PdM) algorithms within the Industry 4.0 paradigm. pdm-tools tackles the time-consuming nature of PdM algorithm development by encompassing five key components within a unified framework. pdm-tools tackles the time challenge by offering a unified workflow: generate synthetic vibration data (gearboxes, bearings, shafts) for rapid prototyping, eliminating initial real-world data collection. Data preparation and feature extraction ensure readiness through scaling, filtering, and extracting diverse condition indicators, empowering robust algorithms. Finally, user-defined model development and evaluation allow training, optimization, and selection of optimal PdM algorithms (machine learning/deep learning). By integrating these functionalities within a single architecture, pdm-tools empowers rapid development and evaluation of PdM algorithms, ultimately leading to a more efficient and effective implementation of predictive maintenance strategies within the Industry 4.0 landscape.