Opportunities for agroforestry in Latvia

  • 1 Latvian State Forest Research Institute “Silava”, Riga, Latvia


Agroforestry has the potential to provide a broad range of ecosystem services including maintenance and improvement of soil and water quality. Nevertheless, there is a lack of supporting policies both at national and at European level. Moreover, although tree cover density on agricultural land is surprisingly high in the Baltic States, agroforestry is seldom immediately associated with boreal and hemiboreal regions. Two agroforestry systems corresponding best to the farming traditions in Latvia are short rotation coppices grown on agricultural land and silvopastoral systems. In Latvia, the first experimental area of agroforestry systems of fast growing tree species (Populus spp., Salix spp. etc.) and legumes or perennial grasses was established in 2011. To promote the implementation of bioeconomy principles, municipal waste (wastewater sludge) and renewable energy by-products (wood ash and digestate) were applied as fertilizers to promote increase of yield. Within the study, not only benefits of agroforestry systems were evaluated but also ecological risks associated with the application of fertilizers.



  1. The European Commission, 2019. Available:
  2. FAO, 2019. Available:
  3. Zomer R.J., Trabucco A., Coe R., Place F. 2009. Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper no. 89. Nairobi, Kenya: World Agroforestry Centre.
  4. Hillbrand A., Borelli S., Conigliaro M., Olivier A. 2017. Agroforestry for landscape restoration. Exploring the potential of agroforestry to enhance the sustainability and resilience of degraded landscapes. Food and Agriculture Organization of the United Nations, Rome, 28 p.
  5. Dollinger J., Jose S. 2018. Agroforestry for soil health. Agroforestry Systems, 92, 2, 213–219.
  6. Pinho R.C., Miller R.P., Alfaia S.S. 2012. Agroforestry and the improvement of soil fertility: A View from Amazonia. Applied and Environmental Soil Science, Article ID 616383, 11 p.
  7. Sarvade S., Singh R., Prasad H., Prasad D. 2014. Agroforestry practices for improving soil nutrient status. Popular Kheti, 2, 1, 60- 64.
  8. World Agroforestry, 2019. Available:
  9. Feliciano D., Ledo A., Hillier J., Nayak D.R. 2018. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agriculture, Ecosystems & Environment, 254, 117-129.
  10. Lovrić M., den Herder M., Rois M., Graves A., Pisanelli A., Lovrić N., De Jalon S.G., Vityi A., Varga A., Burgess P. 2017. Application of analytic network process for five Europe’s biogeographical regions. Environmental and socio-economic framework conditions of agroforestry in different regions in Europe. 38 p.
  11. Graves A., Burgess P., Liagre F., Pisanelli A., Paris P., Moreno G., Bellido M., Mayus M., Postma M., Schindler B., Mantzanas K., Papanastasis V.P., Dupraz C. 2009. Farmer perceptions of silvoarable systems in seven European countries. In: Rigueiro Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Advances in Agroforestry. Volume 6. Springer.
  12. Lazdina D., Bardulis A. 2019. Agroforestry practice in Latvia. 4th World Congress on Agroforestry. 20-22 May 2019, Montpellier, France.
  13. Pučka, I., Lazdiņa, D., Bebre, I. 2016. Ground flora in plantations of three years old short rotation willow coppice. Agronomy Research, 14 (4), 1450-1466.
  14. Pučka I., Lazdiņa D. 2013. Review about investigations of Salix spp. in Europe. Research for Rural Development, 2, 13-19.
  15. Krēsliņa V., Štikāne K., Bebre I., Lazdiņa D., Brūmelis G. 2017. Herbaceous plant diversity in energy tree crop plantations. Acta Biol. Univ. Daugavp., 17 (2): 199 – 210.
  16. Wang W.J., Qiu L., Zu Y.G., Su D.X., An J., Wang H.Y., Zheng G.Y., Sun W. & Chen X.Q. 2011. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Global Change Biology, 17(8), 2657–2676.
  17. Nikodemus O., Melecis V., Kārkliņš A., et al. 2008. Augsnes ilgtspējīga izmantošana un aizsardzība. LU Akadēmiskais apgāds, Rīga, 256 p.
  18. Lutter R., Tullus A., Kanal A., et al. 2016a. The impact of shortrotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on nutritional status of former arable soils. Forest Ecology and Management, 362, 184–193.
  19. Udawatta R.P. & Jose S. 2011. Carbon sequestration potential of agroforestry practices in temperate North America. In: Carbon sequestration potential of agroforestry systems, Kumar B.M. & Nair P.K.R. (Eds), Springer Netherlands, 17–42.
  20. Bardule A., Rancane S., Gutmane I. et al. 2013. The effect of fertiliser type on hybrid aspen increment and seed yield of perennial grass cultivated in the agroforestry system. Agronomy Research, 11(1), 13–24.
  21. Meiresonne L., Schrijver A.D. & De Vos B. 2006. Nutrient cycling in a poplar plantation (Populus trichocarpa x Populus deltoides, Beaupre) on former arable land in northern Belgium. Canadian Journal of Forest Research, 37, 141–155.
  22. Lutter R., Tullus A., Kanal A., et al. 2016b. The impact of former land-use type to above- and below-ground C and N pools in shortrotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions. Forest Ecology and Management, 378, 79–90.
  23. Frausto da Silva J.J.R. & Williams R.J.P. 2001. The biological chemistry of the elements. The inorganic chemistry of life. Clarendon Press, Oxford, 561 p.
  24. Smidt S., Jandl R., Bauer H., et al. 2012. Trace metals and radionuclides in Austrian forest ecosystems. In: The Biosphere. Ishwaran N. (Ed). InTech, 302 p.
  25. Lee K.H., Isenhart T.M. & Schultz R.C. 2003. Sediment and nutrient removal in an established multi-species riparian buffer. Journal of Soil and Water Conservation, 58(1), 1–8.
  26. Allen S., Jose S., Nair P.K.R., et al. 2004. Safety net role of tree roots: experimental evidence from an alley cropping system. Forest Ecology and Management, 192, 395–407.
  27. Nair V.D. & Graetz D.A. 2004. Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: the Florida experience. Agroforestry Systems, 61, 269–279.
  28. Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76(1), 1–10.
  29. Tērauda E. 2008. Ķīmisko vielu plūsmas Latvijas priežu mežu ekosistēmās. Promocijas darbs. Latvijas Universitāte, Riga, 124 p.
  30. Tully K.L., Lawrence D. & Scanlon T.M. 2012. More trees less loss: Nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agriculture, Ecosystems & Environment, 161, 137–144.

Article full text

Download PDF