• INFLUENCE OF CARBON NANOTUBES AND GRAPHENE ON THERMAL AND ELECTROMAGNETIC PROPERTIES OF PLA NANOCOMPOSITES

    Machines. Technologies. Materials., Vol. 12 (2018), Issue 12, pg(s) 510-513

    This work investigate electromagnetic and thermal properties of poly(lactic) acid-based composites with graphene nanoplates (GNP) and multiwalled carbon nanotubes (MWCNTs), produced by solution blending method. It was found that the MWCNT carbon nanotubes are an effective filler for both absorption and reflection of electromagnetic waves in the GHz and THz frequency domains. The higher aspect ratio of carbon nanotubes, compared to industrial MWCNT, is the cause of better electromagnetic characteristics of nanocomposites prepared by solution blending method (SB). The DSC analysis of the samples shows that the glass transition is around 60oC, followed by cold crystallization with enthalpy and melting temperature around 150oC. The TGA analysis show, that the thermal stability of PLA polymer is improved by addition of 6% MWCNTs and GNP.

  • INVESTIGATION OF RHEOLOGICAL AND SURFACE PROPERTIES OF POLY(LACTIC)ACID POLYMER / CARBON NANOFILLER NANOCOMPOSITES AND THEIR FUTURE APPLICATIONS

    Industry 4.0, Vol. 4 (2019), Issue 1, pg(s) 19-23

    The recent subject of great research challenge and one of the most active area of research for well in materials science include the development of nanofiller reinforced polymer materials for additive manufacturing application. The dispersion of nanofiller in polymer matrix is a critical issue not only for control of processing but also for pre-defined properties. Quantitative analysis of extent of dispersion of nanofiller by measuring the rheological and surface characteristics of polymer nanocomposites has great technical importance for improving processing conditions, as well as for understanding the fundamental characteristics of materials at the nanoscale. The incorporation of nanofiller graphene into polymers is a promising approach to impart certain electrical and magnetic properties, mechanical reinforcement and high thermal conductivity to the resulting material. Rheological and surface properties of the poly(lactic) acid (PLA) based nanocomposites incorporating 0-9 wt.%. graphene nanoplates (GNPs) were investigated in the present work and a new strategy to tune such properties of PLA matrix by varying filler content is proposed.