• MATERIALS

    Application of characterisation methods in the development of biomedical titanium alloys

    Machines. Technologies. Materials., Vol. 17 (2023), Issue 2, pg(s) 86-89

    Biomaterials are becoming an increasingly important research topic over time as they are used to replace parts and functions of the human body, helping to improve the quality of human life. Titanium alloys are particularly important for the development of new biomaterials. Commercial pure titanium and its alloys are used as essential structural biomaterials in the manufacture of implants due to their excellent biocompatibility, good corrosion resistance and mechanical strength. However, studies have shown that aluminum and vanadium ions are released in alloys such as Ti-6Al-4V, which can cause health problems over time. Because of the problems that occur, researchers are working to improve the properties of titanium alloys by adding new elements. In most cases, different metals are added to titanium and it is known that with the presence of different metals, the properties of titanium also change. All biomedical titanium alloys must undergo various testing procedures before they can be used. The article describes the characterisation methods used in the development of titanium alloys, such as: light and scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction analysis, differential scanning calorimetry, differential thermal analysis. The reliability of the results depends on the methods used and the avoidance of errors in the characterisation of biomedical alloys in order to reach better conclusions and produce alloys of the highest quality desirable for use in the human body.

  • MATERIALS

    Two-stage sintering investigation of Ti-Zr-Nb biomedical alloys

    Machines. Technologies. Materials., Vol. 13 (2019), Issue 9, pg(s) 404-407

    Biomedical alloys 19Ti-59Zr-22Nb and 40 Ti-35Zr-25Nb were produced by blended elemental powder metallurgy approach using TiH2, ZrH2 and Nb powders. Usage of hydrogen as temporary alloying element for titanium and zirconium leads to activated sintering and decreased residual porosity of the alloys produced. Contrary, large amount of Nb powder negatively affects sintering and 6-9% residual porosity is observed in sintered alloys. Two-stage sintering (TSS) approach which includes preliminary sintering of powder blends, hydrogenation of sintered products, crushed in powder and sintering again, was used to obtain uniform alloys with reduced porosity. Volume changes of sintering of noted powder blends and prealloyed powders were investigated together with microstructure of sintered materials. Using prealloyed hydrogenated powders in TSS process resulted in activated densification, improved homogeneity of alloy microstructures and low (~2%) residual porosity.