Anatase or Rutile TiO2 Nanolayer Formation on Ti Substrates by Laser Radiation: Mechanical and Photocatalytic Properties
A laser-induced oxidation method for the formation of a TiO2 layer on a Ti substrate was used. The TiO2 phase can be controlled by an Nd:YAG laser with fundamental frequency at an intensity I = 52.8 MW/cm2 and three different doses. Dose D1 = 3.1×1020 phot/cm2 forms a TiO2 layer in the anatase phase, which possesses the highest photocatalytic, antibacterial and adhesion properties. As the laser dose increases, the TiO2 layer thickness increases from 40 nm to 100 nm, but the photocatalytic decomposition reaction constant decreases. The observed super-linear increase of the TiO2 layer thickness with the laser dose is explained by the presence of positive feedback during the irradiation process. The temperature rises with increasing of the thickness due to the interference-caused decrease of the reflection coefficient. As the thickness increases, TiO2 on Ti structure adhesion decreases from 800 mN to 400 mN due to the formation of a layer with a mixture of phases.