Two-stage sintering investigation of Ti-Zr-Nb biomedical alloys

  • 1 G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine
  • 2 National Technical University of Ukraine ―Igor Sikorsky Kyiv Polytechnic Institute‖


Biomedical alloys 19Ti-59Zr-22Nb and 40 Ti-35Zr-25Nb were produced by blended elemental powder metallurgy approach using TiH2, ZrH2 and Nb powders. Usage of hydrogen as temporary alloying element for titanium and zirconium leads to activated sintering and decreased residual porosity of the alloys produced. Contrary, large amount of Nb powder negatively affects sintering and 6-9% residual porosity is observed in sintered alloys. Two-stage sintering (TSS) approach which includes preliminary sintering of powder blends, hydrogenation of sintered products, crushed in powder and sintering again, was used to obtain uniform alloys with reduced porosity. Volume changes of sintering of noted powder blends and prealloyed powders were investigated together with microstructure of sintered materials. Using prealloyed hydrogenated powders in TSS process resulted in activated densification, improved homogeneity of alloy microstructures and low (~2%) residual porosity.



  1. M. Niinomi, Sci. Technol. Adv. Mater. 4 (2003) 445–454.
  2. H.C. Hsu, S.C. Wu, Y.C. Sung, W.F. So, J. Alloys Compd. 488 (2009) 279–283.
  3. W.F. Ho, C.H. Cheng, C.H. Pan, S.C. Wu, H.C. Hsu, Mater. Sci. Eng. C 29 (2009) 36–46.
  4. Duerig TW, Albrecht J, Richter D, Fischer P. Acta Metall 1982;30:2161–72.
  5. Grosdidier T, Philippe MJ. Mater Sci Eng A 2000;291:218– 23.
  6. Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S. Mater Trans 2002;43:2978–83.
  7. Maeshima T, Nishida M. Mater Trans 2004;45:1096–100.
  8. Zhou T, Aindow M, Alpay SP, Blackburn MJ, Wu MH. Scripta Mater 2004;50:343–8.
  9. Fukui Y, Inamura T, Hosoda H, Wakashima K, Miyazaki S. Mater Trans 2004;45:1077–82.
  10. Kim HY, Ohmatsu Y, Kim JI, Hosoda H, Miyazaki S. Mater Trans 2004;45:1090–5
  11. X. Wang, Y. Li, P.D. Hodgson, C. Wen, Tissue Eng. Part A 16 (2010) 309–316.
  12. Y. Zhentao, Z. Lian, Mater. Sci. Eng. A 438–440 (2006) 391–394.
  13. A. Inoue, Acta Mater. 48 (2000) 279–306.
  14. Song Y Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys / Song Y, Xu DS, Yang R // Materials Science and Engineering: A. — 1999. — pp 269–274.
  15. Banerjee R A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants / Banerjee R, Nag S, Fraser HL // Materials Science and Engineering: C. — 2005. — pp 282–289.
  16. Yu Xiang Ni Decyl bis phosphonate–protein surface modification of Ti–6Al–4V via a layer-by-layer technique / Yu Xiang Ni, Bo Feng, Jianxin Wang, Xiong Lu, Shuxin Qu, Jie Weng // Journal of Materials Science. — 2009. — pp 4031-4039.
  17. M. Long, H.J. Rack, Biomaterials 19 (1998) 1621–1639
  18. Takahashi M, Kobayashi E, Doi H, Yoneyama T, Hamanaka H. Phase stability and mechanical properties of biomedical B type titanium–zirconium based alloys containing niobium. J. Jpn Inst Met, 2000;64:1120–6.
  19. Yang GJ, Zhang T. Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and biocompatible. J. Alloy Compounds, 2005;392: 291–4.
  20. Ivasishin O.M.. Markovskiy P.E.. Popov A.A.. Karasevskaya O.P.. Mordyuk B.N.. Skiba I.A.. Illarionov A. G. Obrazovaniye nanostrukturnoy - fazy v deformirovannykh metastabilnykh β-splavakh na osnove Ti i Zr. Metallofizika i noveyshiye tekhnologii2011, t.33, №5, p. 673-685. (in Russian)
  21. S. V. Grib. A. G. Illarionov. A. A. Popov. O.M.Ivasishin. Razrabotka i issledovaniye struktury. fiziko-mekhanicheskikh svoystv nizkomodulnykh splavov sistemy Ti–Zr–Nb. Fizika metallov i metallovedeniye. 2014. t 115. No 6. p. 638–647 (in Russian)
  22. A.N.Timoshevskii, S.Yablonovskyy, O.M.Ivasishin. Firstprinciples calculations atomic structure and elastic properties of TiNb alloys. // Functional Materials. - 2012. - 19, № 2. - p. 266-271.
  23. D.G.Savvakin. N.M.Gumenyak. Sintez splavov na osnove binarnoy sistemy tsirkoniy-titan s ispolzovaniyem dispergirovannogo gidrida tsirkoniya // Metallofizika i noveyshiye tekhnologii. 2013. t.35. №3. p.349-358. (in Russian)
  24. O.M. Ivasishin, D.H.Savvakin. Syntez splaviv na osnovi tsyrkoniiu i tytanu z vykorystanniam yikh hidrydiv. FKhMM, 2015, t.51, №4, p.27-35. (in Ukrainian) F.H.Froes, D.Eylon. Powder metallurgy of titanium alloys, Inter. Mater. Rev.-1990. -v.35, No. 3. - p.162-182.
  25. Ivasishin O.M., Savvakin D.G. The Impact of Diffusion on Synthesis of High-Strength Titanium Alloys from Elemental Powder Blends. Key Engineering Materials. – 2010. -vol. 436. - p. 113-121.
  26. D.V.Oryshych, D.G.Savvakin, O.O.Stasiuk, B.Ya.Melamed Solid state synthesis of Zr-Ti-Nb alloys using multicomponent powder blends. Metallophysics and Advanced Technologies.2019, vol. 41, No. 2, pp. 213–226.
  27. O.M.Ivasishin, D.G.Savvakin, D.V.Oryshych, O.O.Stasiuk, Li Yuanyuan, Hydride Approach in Blended Elemental Powder Metallurgy of Beta Titanium Alloys, Presented at 14th World Conference on Titanium Ti-2019 (10-14 June 2019), Nantes, France; will be published in the proceedings
  28. O. M. Ivasishin, O. P. Karasevska, D. G. Savvakin, M. M. Humenyak, Ya. I. Melnyk, and O. O. Stasiuk. Metallophysics and Advanced Technologies. 2016, vol. 38, pp. 1527-1540 (in Ukrainian)

Article full text

Download PDF