Alkali and acid activated geopolymers based on iron-silicate fines – by-product from copper industry

  • 1 Institute of Mineralogy and Crystallography, Bulgarian Academy of Science (IMC-BAS), Sofia, Bulgaria


Geopolymer based on iron-silicate fines (fayalite slag) were synthesized in alkaline and acidic media using activation solution
comprised of respectively alkali silicate and phosphoric acid solutions. The raw material consists of fayalite, magnetite and pyroxene which could be a conglomerate in some particles. The alkali activation occurs very slow at room temperature, while acid activation take place very rapid. The acid activated geopolymer binder phase include cracks probably formed by thermal gradient because of the rapid exothermal reaction. The morphology of the alkali activated geopolymers were presented by porous structure.



  1. “Annual Data 2018 Copper Supply & Consumption — 1997–2017,” 2018.
  2. J. Davidovits, “Geopolymer chemistry and applications,” 2008.
  3. A. Nikolov, “Physical properties and powder XRD characterization of fly ash-based geopolymers heated up to 1150 oC,” Rev. Bulg. Geol. Soc., vol. 80, no. 3, pp. 36–38, 2019.
  4. J. L. Provis and J. S. J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications. Elsevier, 2009.
  5. P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer, “Geopolymer technology: the current state of the art,” J. Mater. Sci., vol. 42, no. 9, pp. 2917–2933, 2007.
  6. J. Davidovits, “What is a geopolymer? Introduction,” 2012. [Online]. Available: [Accessed: 16- Jan-2020].
  8. A. Nikolov, “Alkali-activated geopolymers based on iron-rich waste from copper industry,” Comptes Rendus L’Academie Bulg. des Sci., 2020.
  9. K. Komnitsas, D. Zaharaki, and V. Perdikatsis, “Geopolymerisation of low calcium ferronickel slags,” J. Mater. Sci., vol. 42, no. 9, pp. 3073–3082, May 2007, doi: 10.1007/s10853- 006-0529-2.
  10. K. Komnitsas, D. Zaharaki, and G. Bartzas, “Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers,” Appl. Clay Sci., vol. 73, pp. 103– 109, Mar. 2013, doi: 10.1016/J.CLAY.2012.09.018.
  11. K. Komnitsas, D. Zaharaki, V. P.-J. of H. Materials, and undefined 2009, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,” Elsevier.
  12. I. Maragkos, I. Giannopoulou, D. P.-M. Engineering, and undefined 2009, “Synthesis of ferronickel slag-based geopolymers,” Elsevier.
  13. S. Onisei, A. P. Douvalis, A. Malfliet, A. Peys, and Y. Pontikes, “Inorganic polymers made of fayalite slag: On the microstructure and behavior of Fe,” J. Am. Ceram. Soc., vol. 101, no. 6, pp. 2245–2257, Jun. 2018, doi: 10.1111/jace.15420.
  14. S. Onisei, K. Lesage, B. Blanpain, and Y. Pontikes, “Early Age Microstructural Transformations of an Inorganic Polymer Made of Fayalite Slag,” J. Am. Ceram. Soc., vol. 98, no. 7, pp. 2269–2277, Jul. 2015, doi: 10.1111/jace.13548.
  15. A. Nikolov, R. Titorenkova, N. Velinov, and Z. Delcheva, “Characterization of a novel geopolymer based on acid-activated fayalite slag from local copper industry,” Bulg. Chem. Commun., vol. 50, no. F, pp. 54–61, 2018.
  16. A. Katsiki, A. Peys, Y. Pontikes, and H. Rahier, “Activation of fayalite slag towards inorganic polymers,” in 5th international slag valorisation symposium. Leuven: Leuven University Press, 2017.

Article full text

Download PDF