MACHINES

Thermodynamic analysis of three-cylinder steam turbine from combined cycle power plant

  • 1 Faculty of Engineering, University of Rijeka, Rijeka, Croatia

Abstract

The paper present thermodynamic analysis of three-cylinder steam turbine, which operates in a combined cycle power plant. It is performed analysis of each turbine cylinder and of entire steam turbine. Comparison of steam turbine cylinders shows that intermediate pressure cylinder develops the highest real power and has the highest efficiencies while low pressure cylinder has the highest ideal (isentropic) power, the highest loses and the lowest efficiencies – therefore, improvement potential of the low pressure cylinder is the highest. Entire observed steam turbine has an energy efficiency equal to 86.58 % and exergy efficiency equal to 89.26 %, what is lower in
comparison to high power steam turbines from some conventional land-based steam power plants but also higher in comparison to low power marine steam turbines.

Keywords

References

  1. Hu, Y., Gao, Y., Lv, H., Xu, G., Dong, S.: A New Integration System for Natural Gas Combined Cycle Power Plants with CO2 Capture and Heat Supply, Energies 11, 3055, 2018. (doi:10.3390/en11113055)
  2. Sharma, M., Singh, O.: Investigations for performance enhancement of dual pressure HRSG in gas/steam combined cycle power plants, International Journal of Ambient Energy 38(4), p. 339-346, 2017. (doi:10.1080/01430750.2015.1100680)
  3. Plis, M., Rusinowski, H.: A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnostic systems, Energy 156, p. 606-619, 2018. (doi:10.1016/j.energy.2018.05.113)
  4. Bonforte, G., Buchgeister, J., Manfrida, G., Petela, K.: Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant, Energy 156, p. 352-359, 2018. (doi:10.1016/j.energy.2018.05.080)
  5. Oh, H.-S., Lee, Y., Kwak, H.-Y.: Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study, Entropy 19, 643, 2017. (doi:10.3390/e19120643)
  6. Liu, Z., Karimi, I. A.: New operating strategy for a combined cycle gas turbine power plant, Energy Conversion and Management 171, p. 1675–1684, 2018. (doi:10.1016/j.enconman.2018.06.110)
  7. Riboldi, L., Nord, L. O.: Offshore Power Plants Integrating a Wind Farm: Design Optimisation and Techno-Economic Assessment Based on Surrogate Modelling, Processes 6, 249, 2018. (doi:10.3390/pr6120249)
  8. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation, Energies 12, 4352, 2019. (doi:10.3390/en12224352)
  9. Lemmon, E. W., Huber, M. L., McLinden, M. O.: NIST Reference Fluid Thermodynamic and Transport Properties- REFPROP, Version 9.0, User’s Guide, Colorado, 2010.
  10. Kanoğlu, M., Çengel, Y.A., Dincer, I.: Efficiency Evaluation of Energy Systems, Springer Briefs in Energy, Springer, 2012. (doi:10.1007/978-1-4614-2242-6)
  11. Mrzljak, V., Prpić-Oršić, J., Poljak, I.: Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System, Journal of Maritime & Transportation Sciences 54 (1), p. 37-51, 2018. (doi:10.18048/2018.54.03)
  12. Ahmadi, G. R., Toghraie, D.: Energy and exergy analysis of Montazeri Steam Power Plant in Iran, Renewable and Sustainable Energy Reviews 56, p. 454–463, 2016. (doi:10.1016/j.rser.2015.11.074)
  13. Mrzljak, V., Blecich, P., Anđelić, N., Lorencin, I.: Energy and exergy analyses of forced draft fan for marine steam propulsion system during load change, Journal of Marine Science and Engineering 7, 381, 2019. (doi:10.3390/jmse7110381)
  14. Cengel Y., Boles M.: Thermodynamics an engineering approach, Eighth edition, McGraw-Hill Education, 2015.
  15. Baldi, F., Ahlgren, F., Van Nguyen, T., Thern, M., Andersson, K.: Energy and Exergy Analysis of a Cruise Ship, Energies 2018, 11, 2508. (doi:10.3390/en11102508)
  16. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Exergy analysis of marine steam turbine labyrinth (gland) seals, Scientific Journal of Maritime Research 33(1), p. 76-83, 2019. (doi:10.31217/p.33.1.8)
  17. Mrzljak, V., Senčić, T., Žarković, B.: Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change, Modelling and Simulation in Engineering 2018. (doi:10.1155/2018/2945325)
  18. Tan, H., Shan, S., Nie, Y., Zhao, Q.: A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle, Cryogenics 92, p. 84–92, 2018. (doi:10.1016/j.cryogenics.2018.04.009)
  19. Koroglu, T., Sogut, O. S.: Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant, Energy 163, p. 392-403, 2018. (doi:10.1016/j.energy.2018.08.119)
  20. Blažević, S., Mrzljak, V., Anđelić, N., Car, Z.: Comparison of energy flow stream and isentropic method for steam turbine energy analysis, Acta Polytechnica 59(2), p. 109– 125, 2019. (doi:10.14311/AP.2019.59.0109)
  21. Mrzljak, V., Poljak, I.: Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads, International Journal of Maritime Science & Technology “Our Sea” 66 (1), p. 10-18, 2019. (doi:10.17818/NM/2019/1.2)
  22. Mrzljak, V., Poljak, I., Prpić-Oršić, J.: Exergy analysis of the main propulsion steam turbine from marine propulsion plant, Shipbuilding 70 (1), p. 59–77, 2019. (doi:10.21278/brod70105)
  23. Uysal, C., Kurt, H., Kwak H.-Y.: Exergetic and thermoeconomic analyses of a coal-fired power plant, International Journal of Thermal Sciences 117, p. 106-120, 2017. (doi:10.1016/j.ijthermalsci.2017.03.010)
  24. Mrzljak, V., Poljak, I., Medica-Viola, V.: Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier, Applied Thermal Engineering 119, p. 331–346, 2017. (doi:10.1016/j.applthermaleng.2017.03.078)
  25. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)

Article full text

Download PDF