INNOVATIVE SOLUTIONS

Processing and properties of polymer – mineral compositions

  • 1 Lublin University of Technology, Lublin, Poland
  • 2 Doctoral School at the Lublin University of Technology, Lublin, Poland

Abstract

Recycled plastics find more and more applications. In addition to recycled bulky products, the number and type of products also being used in polymer -mineral composites based on recycled PE and PP. One of the paving products sought by investors are traditional concrete blocks. However, they have their drawbacks, they are heavy, so their transport, logistics must meet stricter requirements, are products that are not very resistant to cracking as a result of impact, are fragile. Mineral-polymer products are the solution to such problems. Innovative compositions for their processing are a polymer – mineral mixture, containing mainly recycled material and mineral fillers (sand, ceramic waste dust). They are therefore products made of waste materials from recycling, recyclates and flakes of polymer materials.
The technology for producing the polymer – mineral composition is based on the extrusion and compression molding technology of the compositions obtained. Polymer compositions are secondary materials, after recycling in the form of recyclates, flakes, and waste plastics, mineral fillers, that is waste ceramic dust, sand as well as activating substances (dyes, plasticizers, adhesion compatibilizers, polymermineral wetting agents). As a result, plastic waste and ceramic waste that cannot be recycled will be effectively processed.
The sprinklers were made of various polymer materials (PP, HDPE) as well as characterized by different shape of working elements and a variable degree of contamination with mineral sludge. The research on the structure of manufactured materials and melt flow rate are presented. The influence of the type of material and mineral deposits on the process ability of the tested polymer-mineral compositions was determined.

Keywords

References

  1. T. Garbacz, L. Dulebova, V. Krasinsky, Adv. Sci. Technol. Res. J., 18, 74-80 (2013)
  2. T. Standau, C. Zhao, S. Murillo Castellón, C. Bonten, V. Altstädt, Polymers, 11, 306-315 (2019)
  3. M. Mahdavi, O. Yousefzade, H. Garmabi, Adv.Polymer Tech., 37, 3017-3026 (2018)
  4. D. Sykutera, M. Bieliński, Polimery-W, 59, 602-605 (2014)
  5. J-M. Pin, A. Tuccitto, M.E. Shivokhin, P.C. Lee, Polymer, https://doi.org10.1016/j.polymer.2020.123123 (2020)
  6. T. Garbacz, Polimery-W, 57, 91-94 (2012)
  7. Z. Han, Y.Zhang, W. Yang, P. Xie, Key Engineering Materials, 717, 68-72 (2016)
  8. J. Guo, Ch. Zhang, Sh. Liang, W. Zou, Polym. Eng. Sci., https://doi.org10.1002/pen.25499 (2020)
  9. D. Chandramohan, International Journal of Advanced Engineering Sciences and Technologies, 6, 97-104 (2011)
  10. K. Głogowska, J. Sikora, B. Duleba, Journal of Polymer Engineering, 7, 36, 705-712 (2016)
  11. J. Janik, Kompozyty, 4, 10, 205-211 (2004)
  12. J. Korol, J. Lenża, D. Burchart-Korol, K. Bajer, Przemysł Chemiczny, 11, 91, 2196-2201 (2012)
  13. E. Kowalska, Z. Wielgosz, M. Zubrowska, S. Pasynkiewicz, M. Choroś, Polimery -W, 49, 828-836 (2004)
  14. S.T. Peters, Handbook of Composities (Mountain View, California, 1998)
  15. M. Szostak, N. Antczak, M. Barczewski, J. Andrzejewski, T. Klepka, Przetwórstwo Tworzyw, 5, 451-457 (2014)
  16. J. Kijeński, A.K. Błędzki, R. Jeziórska, Recovery and recycling of polymeric materials (PWN, 2011)
  17. M. Goliszek, B. Podkościelna, T. Klepka, O. Sevastyanova, Polymers, 12, 1159-1177 (2020)
  18. T. Klepka, R. Jeziorska, A. Szadkowska, Przemysł Chemiczny, 94, 1352–1355 (2015)
  19. Ch. Rauwendaal, E.M. Pilar Noriega, Troubleshooting the extrusion process: a systematic approach to solving plastic extrusion problems (Hanser Publishers, 2001)
  20. M. Świetlicki, D. Chocyk, T. Klepka, A. Prószyński, A. Kwaśniewska, J. Borc, G. Gładyszewski, Materials, 13, 698- 711 (2020)
  21. L. Dulebova, T. Garbacz, Adv. Sci. Technol. Res. J., 11, 66– 71 (2017)
  22. T. Klepka T., H. Dębski, H. Rydarowski, Polimery-W, 54, 668-672 (2009)
  23. M. Celina M., K.T.Gillen R.A. Assink, Polymer Degradation and Stability, 90, 395-404 (2005)
  24. T. Standau, C. Zhao, S. Murillo Castellón, C. Bonten, V. Altstädt, Polymers, 11, 306-315 (2019)
  25. S. Ghosh, D. Khastgir, A. Bhowmick, Polymer Degradation and Stability, 67, 427-436 (2000)
  26. Y. Hu, A. W. Lang, X. Li, S.R. Nutt, Polymer Degradation and Stability, 110, 464-472 (2014)
  27. M. Ito, K. Nagai, Polymer Degradation and Stability, 93, 1723-1735 (2008)
  28. J. Korol, J. Lenża, D. Burchart-Korol, K. Bajer, Przemysł Chemiczny, 91, 2196-2201 (2012)
  29. E. Kowalska, Z. Wielgosz, M. Zubrowska, S. Pasynkiewicz, M. Choroś, Polimery -W, 49, 828-836 (2004)
  30. P. Palutkiewicz, P. Postawa, Journal of Cellular Plastics, 52, 399-418 (2016)
  31. A.Woszuk, W. Franus, Logistyka, 4, 6819-6827 (2015)
  32. M. Xanthos, Functional fillers for plastics (Wiley-VCH Verlag GmbH & Co. KGaA, Weinhaim, 2010)
  33. Y. Zhao, B. Choi, A. Chudnovsky, International Journal of Fatique, 51, 26-35 (2013)
  34. S. Zha, H. Lan, International Journal of Pressure Vessels and Piping, 189, 104270-104282 (2021)
  35. D. Chandramohan, International Journal of Advanced Engineering Sciences and Technologies, 6, 97-104 (2011)
  36. H. Leda, Polymer composites with continuous fibers (Wydawnictwo Politechniki Poznańskiej, Poznań 2006)
  37. X. Zhang, R. Ma, J. Liu, W. Wu, Journal of Polymer Engineering, doi.org/10.1515/polyeng-2019-0024 (2019)

Article full text

Download PDF