• TECHNOLOGIES

    Improving the Corrosion Resistance of Carbon Steel Cylindrical Pipe by Nano-Materials Coating, Part -1.

    Machines. Technologies. Materials., Vol. 15 (2021), Issue 3, pg(s) 110-116

    Recent research has shown that the Nano coating materials play a vital role in improving performance of corrosion resistance in hostile environment and enhancing the mechanical properties and reducing the dimension changes. Due to the superior capabilities of Nano coating in many benefits which can be achieved, in addition to corrosion resistance, mechanical properties, make it smoother, stronger and improves its adhesive properties. In this work, the effect of anti-corrosive nanomaterials (Cobalt and Zinc) coating on chemical corrosion behavior and mechanical properties of carbon steel cylindrical pipe were studied in detail. The Nano-coating was done with different thicknesses (300nm,600nm,900nm and 10 μm), then analyzed using ANSYS software technology (version .19).The results showed that there is a strong relationship of corrosion improvement with improving mechanical properties, especially surface deformation resistance, elastic strain and stresses reduction of the inner pipe surface which contains a pressurized corrosive fluid. The maximum improvement was with the thickness of the cobalt coating (10 μm. The result of improvement in corrosion resistance of the cobalt-coated surface is approximately (5.165%) compared to the uncoated surface, also, the results showed an improvement in mechanical resistance and corrosion res istance because of deposition of cobalt particles better than zinc particles in all different thicknesses, with a maximum of about (66%) compared to zinc. Therefore, can conclude that the improving corrosion resistance due to coating with nanomaterials is very promising.

  • MATERIALS

    Improving the Linearized stresses resistance by Nano-Coating, Part-2

    Machines. Technologies. Materials., Vol. 14 (2020), Issue 1, pg(s) 44-54

    The part-2 research is a continuation of part-1 of using a simulation of Nano coating effect on linearized stresses resistance using Finite Element Analysis (FEA) software was carried out. The prime focus here was on exposing a thin Aluminum (Al7075-T6) walled spherical vessel to internal pressure before and after coating, this spherical vessel was coated by Nano- layer using two different materials such as Titanium (Ti) and Nickel (Ni) with thicknesses ranging (100 nm, 500 nm, and 900 nm). Then a comparison of the obtained results was made before and after coating. The results showed that the aluminum Al7075-T6 thin walled spherical vessel successfully coated with Titanium and Nickel separately using ANSYS software. In addition, the results have shown that 100,500 and 900 nm thickness Nickel coated aluminum 7075-T6 thin walled spherical vessel has a better improvement in linearized stresses resistance. These improvements in linearized stresses resistance were equal to 42% with Nickel coating in comparison with Titanium coating of thickness (100, 500 1nd 900 nm). The improvement of the linearized stress highest resistance is about 2.5% and 5% for Ti and Ni, respectively.

  • Improving the mechanical properties of conventional materials by nano-coating, Part-1

    Materials Science. Non-Equilibrium Phase Transformations., Vol. 5 (2019), Issue 4, pg(s) 112-119

    The use of an advanced nanotechnology coating process is absolutely helpful in immensely optimizing the efficiency of mechanical properties of materials such as: Longer service life, ability to tolerate greater loads, ease and low cost of maintenance, the environmental gain in the conservation of resources, improved response in kinetic systems, lower energy consumption, resistance to corrosion, low friction, use of low-cost base material, etc. Metal materials are usually subjected to various surface conditions that might cause stress, strain, deformation, and corrosion. Accordingly, Nano-coating technology is used to enhance the performance of mechanical properties in addition to reduce mechanical failure as much as possible. This research, a simulation of Nano coating effect on some mechanical properties performance using Finite Element Analysis (FEA) software was carried out. The prime focus here was on exposing a thin Aluminum (Al7075-T6) walled spherical vessel to internal pressure before and after coating, this spherical vessel was coated by nano- layer using two different materials such as Titanium (Ti) and Nickel (Ni) with thicknesses ranging (100 nm, 500 nm, and 900 nm). Then a comparison of the obtained results was made before and after coating, the results showed that the aluminum 7075-T6 thin walled spherical vessel was successfully coated with Titanium and Nickel separately using ANSYS software. Also the results showed that 900 nm Nickel coated aluminum 7075-T6 thin walled spherical vessel has a better improvement in mechanical properties. These improvements in mechanical properties were varied between 4.5225% to 20.724% depending on coating thickness and coating material. The Nickel coating has shown higher improvements in comparison with Titanium were observed.