Consistent Presentation of the Beam Deflection Theory Including Shear Correction

  • 1 Institute of Mechanics - Bulgarian Academy of Sciences


This article explains a mathematically consistent approach for solving the equations of Timoshenko’s beam theory for statically loaded beams. Theoretic sections 3.4 – 3.5 give a good description of the shear deformation and the primary approach for calculating deflections of beams under bending, taking into account both causes for deflection: bending moment and shear force. Values for the shear correction factor are discussed in section 4. This work was started to check the validity of an equation for deflection of a symmetrically loaded short rectangular beam with span/height ratio = 3 under four-point bending with upper-span/span ratio = 1/3. The exact solution is not presented here, but we can confirm that the presented theory, when applied for the mentioned loading scheme, leads to thi s equation using a shear correction factor k = 5/6.



  1. S.P. Timoshenko, History of Strength of Materials. State publ. house for technical-theor. Literat. Moscow. (1957) (in Russian)
  2. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity. McGraw-Hill Book company Inc, (1951).
  3. S.P. Timoshenko Strength of Materials. Part I. Elementary theory and problems. Publ. D. van Nostrand company. II ed. (1948)
  4. S.P. Timoshenko, Phil. Mag. 41, 744-746 (1921).
  5. N.G. Stephen, J. Appl.Mech. Mar., 47 (1): 121-127 (1980)
  6. I. Kisiov, Strength of materials, III ed. Technika. (1963) (in Bulgarian “Съпротивление на материалите”)
  7. EN ISO 178:2019. Plastics – determination of flexural properties
  8. G.M. Gere, B.G Goodno, Mechanics of materials 8-th ed., SI. Cengage Learning (2013)
  9. S.P. Mandgakov, Mandichev GI, Veselinov KV et. al. Collection of Problems and Methodological Guidelines on Strength of Materials. Ed. by S.P Nedelchev. Technika. (1989) (in Bulgarian “СБОРНИК от задачи и методически указания по съпротивление на материалите”)
  10. K.T. Chan, K.F. Lai, N.G. Stephen, K. Young. J. of Sound and Vibr. 330 (14), pp. 3488-3497 (2011)
  11. H. Hadavinia, K. Gordnian, J. Karwatzki and A. Aboutorabi, SDHM, 2 No 4, pp.197-206 (2006)
  12. N.G. Stephen, J. of Sound and Vibr. 292, pp. 372–389 (2006)
  13. X.-F. Li, J. of S. and Vibr. 318 No 4-5, pp. 1210–1229 (2008)
  14. Jae-Hoon Kang, J. of Sound and Vibr. 333 No 14, pp. 3332–3337 (2014)
  15. Marie Brons, J.J. Thomsen, J. of Sound and Vibr. 459, 114856 (2019)
  16. G.R. Cowper, J. Appl. Mech., 33 No 2, pp. 335–340 (1966)
  17. T. Kaneko, J. Phys. D (Appl. Phys.) 8, No 16, pp. 1927-1936 (1975).
  18. A. Dı´az-de-Anda, J. Flores, et al., J. of Sound and Vibr. 331, No 26, pp. 5732–5744 (2012)
  19. T.H.G. Megson Aircraft Structures for engineering students. IV ed. ELSEVIER (2007)
  20. Ke Gong, Appl. Math. and Mech. (Engl. Ed.), 21, No 9 pp. 1091-1098 (2000)
  21. Yuwaraj M.Ghugal, Rajneesh Sharma, Lat. Amer. J. of Solids and Structures, 8, No 2, pp. 183 – 195 (2011)

Article full text

Download PDF