Nanosized ZnO and ZnO@zeolite composite prepared via sonication method

  • 1 Univers ity of Mining and Geology “St. Ivan Rilski”, Sofia, Bulgaria


ZnO nanosized materials are well known for their photocatalytic and antibacterial properties. Their implication in water treatment and environmental protection, especially as a part of composite materials, has been an object of study of a great number of researchers working in the field. Zeolites are excellent candidates for support of composites preparation with semiconductor oxides since they are nonhazardous, non-expensive and naturally abundant materials. In order to synthesize nanosized ZnO with well-developed surface area and uniform size distribution in pristine form and supported on zeolite, we applied the method of precipitation assisted by sonicatio n. As prepared ZnO nanoparticles and the composite ZnO-zeolite were characterized by XRD, SEM and UV-Vis spectroscopy. The ZnO crystalized in wurtzite structure in both materials. The morphology of ZnO nanoparticles was affected by the zeolite framework, as in the composite the ZnO was formed in-situ at the presence of zeolite. The ultrasonic irradiation during the precipitation of Zn(OH)2 and aging of the reaction mixture causes activation of the zeolite surface and prevents the aggregation of ZnO particles. In result evenly distributed ZnO nanoparticles were obtained in the composite.



  1. A. C. Janaki, E. Sailatha, S. Gunasekaran, Spectrochim Acta A, 144, 17 (2015)
  2. M. Sundrarajan, S. Ambika, K. Bharathi, Adv Powder Technol ., 26(5), 1294 (2015)
  3. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Mater Sci Semicond Process, 32, 55 (2015)
  4. S. Dey, S. Das, A. K. Kar, Mater. Chem. Phys., 270, 124872 (2021)
  5. H. Weerathunga, C. Tang, A. J. Brock, S. Sarina, T. Wang, Q. Liud, H. Zhu, A. Du, E.R. Waclawik, J. Colloid Interface Sci., 606(1), 588 (2022)
  6. W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv.Mater, 16(12), 1009 (2004)
  7. M. Saeidi, M. Abrari, M. Ahmadi, Appl. Phys. A 125, 409 (2019).
  8. F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Mater. Lett., Volume 161, 24 (2015)
  9. G. Yashni, A. Al-Gheethi, R. M. S. R. Mohamed, N. Vo Dai-Viet, A. A.Al-Kahtani, M. Al-Sahari, N. J. N. Hazhar, E. Nomand, S. Alkhadher, Chemosphere, 281, 130661 (2021)
  10. H. A. Salam, R. Sivaraj, R. Venckatesh, Mater. Lett, 131, 16 (2014)
  11. S.R. Veerabhadraiah, S. Maji, A. Panneerselvam, J. Cryst. Growth, 14, 126430 (2021)
  12. Z. Sharifalhoseini, M. H. Entezari, R. Jalal, Ultrason Sonochem 27, 466 (2015)
  13. D. Meronia, C. Gasparini, A. Di Michele, S. Ardizzone, C. L. Bianchi, Ultrason Sonochem 66, 105119 (2020)
  14. R. Shaw, T. Mittal, S. Tiwari, S. K. Tiwari, J. Environ. Chem. Eng. 6, 1424 (2018)
  15. V. R. Batistela, L. Z. Fogaca, S. L. Fávaro,W. Caetano, N. R. Camargo Fernandes-Machado, N. Hioka, Colloids Surf. A: Physicochem. Eng. Asp. 513, 20 (2017)
  16. X. Li, H. Li, X. Wang, D. Xu, T.g You, Y. Wu, F. Xu, Int. J. Biol. Macromol. 183, 760 (2021)
  17. Z. Heidaria, R. Alizadeha, A. Ebadia, N. Oturan, M.A. Oturan, M. Sep. Purif. Technol., 242, 116800 (2020)
  18. M. Panayotova, N. Mintcheva, G. Gicheva, L. Djerahov, N. Mirdzveli, Proceedings of 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 18 - 24 August 2020; p. 77-84
  19. I. Rodríguez Iznaga, V. Petranovskii, G. Rodríguez Fuentes, C. Mendoza, A. Benítez Aguilar, J. Colloid Interface Sci. 316, 877 (2007).
  20. T.B. Ivetic, M.R. Dimitrievska, I.O. Guth, Lj.R. Dacanin, S.R. Lukic-Petrovic, J. Phys. Res. 36 (1), 43 (2012)

Article full text

Download PDF