Walking pattern generation and control for a bipedal robot

  • 1 Kırklareli University, Kırklareli, Turkey
  • 2 Trakya University, Edirne, Turkey


Bipedal, four-legged and humanoid robots are rapidly increasing in our lives. The design and development of robots continue in similar. For this reason, the importance of studies on bipedal robots is also increasing. In this study, the design of a biped robot, forward and inverse kinematics computation were made. Bipedal robot walking pattern and joint angle changes were determined according to the kinematic model of the robot and the power of the motors to rotate the joints. As a result of the walking pattern, center of mass and zero moment point change were tracked. As a result of the study, the stepping style, walking motion, gait analysis, changes in joint angles were determined of a bipedal robot.



  1. C. Hernández-Santos, E. Rodriguez-Leal, R. Soto, and J. L. Gordillo, “Kinematics and dynamics of a new 16 DOF humanoid biped robot with active toe joint,” Int. J. Adv. Robot. Syst., vol. 9, 2012, doi: 10.5772/52452.
  2. F. and A. Mayub, “VoBiRo - Vocational Bipedal Robot Platform, Kinematic and Locomotion Control,” in VoBiRo - Vocational Bipedal Robot Platform, Kinematic and Locomotion Control, 2018, pp. 1–6, doi: 10.1109/ICITEED.2018.8534767.
  3. E. R. Magsino, “A walking bipedal robot using a position control algorithm based on Center of Mass criterion,” ARPN J. Eng. Appl. Sci., vol. 14, no. 11, pp. 2029–2038, 2019.
  4. T. Olcay and A. Özkurt, “Design and walking pattern generation of a biped robot,” Turkish J. Electr. Eng. Comput. Sci., vol. 25, no. 2, pp. 761–769, 2017, doi: 10.3906/elk-1409-19.
  5. L. Yang, Z. Liu, and Y. Chen, “Bipedal walking pattern generation and control for humanoid robot with bivariate stability margin optimization,” Adv. Mech. Eng., vol. 10, no. 9, pp. 1–9, 018, doi: 10.1177/1687814018800883.
  6. J. Tacué, C. Rengifo, and D. Bravo, “An experimental energy consumption comparison between trajectories generated by using the cart-table model and an optimization approach for the Bioloid robot,” Int. J. Adv. Robot. Syst., vol. 17, no. 2, pp. 1–14, 2020, doi: 10.1177/1729881420917808.
  7. H. KUSCU, E. YILMAZLAR, and T. TEZ, “EXAMINATION ON BIPEDAL ROBOTS STRUCTURES AND MOTION CONTROL METHODS,” J. Tech. Univ. Gabrovo, vol. 57, no. 1, pp. 69–72, 2018.
  8. R. O ’flaherty et al., “Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+,” Georg. Inst. Technol., pp. 2013–1, 2013.
  9. R. S. Hartenburg, J. Denavit, and F. Freudenstein, “Kinematic Synthesis of Linkages,” J. Appl. Mech., vol. 32, no. 2, p. 477, Jun. 1965, doi: 10.1115/1.3625860.
  10. Z. Y. Bayraktaroğlu, M. Acar, A. Gerçek, and N. M. Tan, “Design and development of the I.T.U. biped robot,” Gazi Univ. J. Sci., vol. 31, no. 1, pp. 251–271, 2018.
  11. H. Tran Thien, C. Van Kien, and H. P. H. Anh, “Optimized stable gait planning of biped robot using multi-objective evolutionary JAYA algorithm,” Int. J. Adv. Robot. Syst., vol. 17, no. 6, pp. 1–13, 2020, doi: 10.1177/1729881420976344.
  12. C. C. Wong, S. R. Xiao, and H. Aoyama, “Natural Walking Trajectory Generator for Humanoid Robot Based on Three-Mass LIPFM,” IEEE Access, vol. 8, pp. 228151–228162, 2020, doi: 10.1109/ACCESS.2020.3046106.
  13. L. Liu, H. Iwata, bi Sheng, M. Huaqing, D. Min, and Z. Zhongjie, “Modelling and control for a bipedal robot on slopes,” Trans. Inst. Meas. Control, vol. 35, no. 7, pp. 910–921, 2013, doi: 10.1177/0142331212457582.
  14. M. Vukobratović and J. Stepanenko, “On the stability of anthropomorphic systems,” Math. Biosci., vol. 15, no. 1, pp. 1–37, 1972, doi:
  15. R. Likaj, X. Bajrami, and A. Shala, “GRUND CONTACT IN SIMMECHANICS FOR HUMANOID ROBOT,” Int. Sci. J. Innov.,
  16. vol. 5, no. 3, pp. 145–150, 2017.
  17. C. C. Liu, T. T. Lee, S. R. Xiao, Y. C. Lin, Z. X. Chou, and C. C. Wong, “Bipedal walking with push recovery balance control involves posture correction,” Microsyst. Technol., vol. 0123456789, 2019, doi: 10.1007/s00542-019-04532-x.
  18. N. H. Nordin, A. Muthalif, and M. Razali, “Control of transtibial prosthetic limb with magnetorheological fluid damper by using a fuzzy PID controller,” J. Low Freq. Noise, Vib. Act. Control, vol. 37, p. 146134841876617, Apr. 2018, doi: 10.1177/1461348418766171.

Article full text

Download PDF