The use of machine learning methods to predict the processes and results of high-voltage electric discharge treatment of titanium powder in kerosene

  • 1 Institute of Pulse Processes and Technologies of NAS of Ukraine, Mykolaiv, Ukraine
  • 2 Admiral Makarov National University of Shipbuilding, Heroes of Ukraine, Ukraine
  • 3 Kaunas University of Technology, Lithuania


The possibility of using machine learning methods to predict the results of high-voltage electric discharge treatment of titanium powder in a hydrocarbon liquid is studied. As a result of the work, distribution surfaces for the average particle diameter of Titanium powder. the amount of Titanium carbide formed during processing, and the number of spherical particles of titanium powder depending on the interelectrode gap and the number of pulses, when using spark discharge and with Titanium powder concentration in kerosene of 0.07 kg / dm3, pulse repetition frequency 0.3 Hz and the energy of single discharge of 1 kJ, were obtained.



  1. msc_whitepaper-ai_a4_ru_2021.pdf
  2. G. N. Gavrilov, G. G. Gorovenko, P. P. Malyushevskii, A. G. Ryabin, Razryadnoimpulsnaya tehnologiya obrabotki mineralnyh sred (Naukova Dumka, Kyiv, 1979). (In Russian).
  3. V. I. Kurets, A. F. Usov, V. A. Tsukerman, Elektroimpulsnaya dezintegratsiya materialov (Publishing house of the Kola Scientific Center of the Russian Academy of Sciences, Apatity, 2002). (In Russian).
  4. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd edition (Springer, 2009).
  5. L. Breiman, Machine Learning. 45. 5–32 (2001).
  6. S. Raschka, V. Mirjalili, Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2 (Packt Publishing Ltd, 2019).
  7. O. M. Syzonenko, P. I. Loboda, A. D. Zaichenko, Ye. V. Solodkyi, A. S. Torpakov, M. S. Prystash, V. O. Trehub, Journal of Superhard Materials. 39, Issue 4. 243–250 (2017).
  8. О. М. Sizonenko, M. S. Prystash, E. І. Таftai, A. S. Torpakov, Ye. V. Lypian, Materials Science. 57. 209–214 (2021).
  9. GOST 23402-78. Metal powders. Microscopic method for determining particle size. (Standards Publishing House, Moscow, 1979). (In Russian).
  10. S. J. Chipera, D. L. Bish, Powder Diffraction. 10. 47–55 (1995).
  11. D.M.W Powers, Journal of Machine Learning Technologies, 2, Issue 1. 37–63 (2011). DOI:10.9735/2229-3981

Article full text

Download PDF