The influence of the composition of the working fluid on the characteristics of high-voltage electric discharge in the “hydrocarbon liquid–Al powder” disperse system

  • 1 Institute of Pulse Processes and Technologies of NAS of Ukraine, Mykolaiv, Ukraine
  • 2 Kaunas University of Technology, Kaunas, Lithuania


Physical modeling of processes in a layer of Al powder in kerosene and ethyl alcohol during high-voltage electrical discharges in the spark discharge mode was carried out. The regularities of the distribution of plasma formations in the volume of the discharge chamber were studied when using ethyl alcohol and kerosene as working substances with an increase in the number of discharges. It is shown that the use of kerosene as a working fluid leads to an increase in the intensity of the formation of discharges between particles. It has been established that ethyl alcohol as a working fluid makes it possible to relatively stabilize the discharge mode, as well as to increase the number of discharges before the appearance of visual signs of the presence of residual nanocarbon, as a result of which it is possible to achieve greater dispersion of the processed powders. The possibility of synthesis of submicron and ultradisperse particles during highvoltage electric discharge processing of aluminum powder in a hydrocarbon liquid (alcohol or kerosene) due to the electrothermal effect of the discharge plasma on the powder particles has been confirmed.



  1. O. N. Sizonenko, E. G. Grigoryev, N. S. Pristash, A. D. Zaichenko, A. S. Torpakov, Ye. V. Lypian, V. A. Tregub, A. G. Zholnin, A. V. Yudin, A. A. Kovalenko, High Temperature Materials and Processes. 36, № 9. 891–896 (2017).
  2. O. Sizonenko, S. Prokhorenko, A. Torpakov, D. Zak, Y. Lypian, R. Wojnarowska–Nowak, J. Polit, and E. Sheregii, AIP Advances. 8, № 8. 085317 (2018).
  3. О. М. Syzonenko, S.V. Prokhorenko, E.V. Lypyan, A.D. Zaichenko, M.S. Prystash, A.S. Тоrpakov, M.О. Pashchyn, R. Voinarovska-Novak, E. Sherehii, Materials Science. 56. 232-239 (2020).
  4. O. M. Syzonenko, P. I. Loboda, A. D. Zaichenko, Ye. V. Solodkyi, A. S. Torpakov, M. S. Prystash, V. O. Trehub, Journal of Superhard Materials. 39, Issue 4. 243–250 (2017).
  5. N.I. Kuskova, O.M. Syzonenko, A.S Torpakov, High Temperature Materials and Processes. 39(1). 357–367 (2020.).
  6. X. Wang, Z. Jing, European Journal of Electrical Engineering. 21, No. 2. 157-163 (2019).
  7. A. A. Scherba, A. N. Zakharchenko, K. G. Lopatko, N. I. Shevchenko, N. A. Lomko, Pratsi IED NANU. 26. 152–160 (2010). (In Russian).
  8. Ageev E. V., Semenikhin B. A., Latypov R. A, Izv. Samarsk. nauchn. centra Rossijskoj akademii nauk. 11, № 5 (2). 238–240 (2009). (In Russian).
  9. G. A. Meerson, G. A. Kassir, E. M. Temnikov, Soviet Powder Metallurgy and Metal Ceramics.14. 93–98 (1975).
  10. A. A. Scherba, M. A. Scherba, Tekhnichna electrodynamika. 6. 3–9 (2010). (In Ukrainian).
  11. A. A. Scherba, S. M. Zakharchenko, L. Yu. Spinul, Pratsi Instytutu elektrodynamiky Natsionalnoi akademii nauk Ukrainy: Zb. nauk. pr. 25. 133–139 (2010). (In Ukrainian).
  12. A. A. Scherba, S. V. Petrychenko, Tekhnichna elektrodynamika. Tem. vyp. “Sylova elektronika ta enerhoefektyvnist”. 61–65 (2002). (In Russian).
  13. N. I. Kuskova, S. V. Petrychenko, P. L. Tsolin, V. Yu. Baklar, Surface Engineering and Applied Electrochemistry. 49. 13–18 (2013).

Article full text

Download PDF