MECHANIZATION IN AGRICULTURE
OPTIONS FOR USING HYDRODYNAMIC CAVITATOR TO SPEED UP SEED GERMINATION
- 1 Engineering Department, Nizhny Novgorod State Agricultural Academy, Nizhny Novgorod, Russian Federation
- 2 Foreign Language Department, Nizhny Novgorod State Agricultural Academy, Nizhny Novgorod, Russian Federation
Abstract
Acoustic cavitation in water causes water’s break in vacuum phase of passing of sound wave and then collapse of this break in manometric phase. These processes are taking place 3000 times a second all over the functional volume of cavitator. This leads to seeds’ awakening and massaging, improves metabolism and stimulates their development and functioning. There are four technology areas in cavitator: 1) internal functional space, 2) central part of space, 3) passive space from the outside of resonator (housing), 4) external heat space around cavitator.
The Academy conducted study on seed treatment in each of these areas. Moreover, in passive area and in external space experiments were performed both in wet and dry options. Analysis of experimental results showed: first, all kinds of treatment in all zones of cavitator have advantages over conventional soaking seeds; secondly, each of the processing forms has its own advantages: 1) dry processing is characterized by thermal and vibrational effects on seeds, it requires their direct contact with the resonator, 2) wet processing in passive zone is characterized by additional water exposure and transmission of vibration effects from resonator over long distances, that enables to increase size of functional area and pre-processing performance, 3) processing in central part of the active zone provides essential decrease of exposure time from tens of minutes to 3-5, that allows using this method in industrial agriculture, 4)processing in turbulent flow of active zone damages seeds and is suitable only for solid seeds and seeds difficult to germinate. Using cavitator improves seed germination by tens of percent when shortened processing time. This reduces the labor intensity, improves pre-processing performance and leads to higher yields.