CONSERVING OF THE RESOURCES

Modelling Fe, Zn and Mn availability in soils of eastern Croatia

  • 1 Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Osijek, Croatia
  • 2 Croatian Agency for Agriculture and Food, Osijek, Croatia
  • 3 Primary school Antunovac, Antunovac, Croatia

Abstract

Iron (Fe), zinc (Zn) and manganese (Mn) are essential microelements with plant available fraction in soil, depending significantly on soil pH and soil organic matter (SOM), which is important for crop growth. The aim of this paper is to present the potential of mathematical models in order to predict the availability of microelements (Fe, Zn, Mn) in acidic and alkaline soils of eastern Croatia. The fundamental database for availability prediction contains results of 22,616 soil samples from eastern Croatia representing an area of 88,714.46 ha of arable land. The mandatory results include soil pH, SOM, available P and K, hydrolytic acidity, and carbonate content. Additional data sets, including supplementary results of total (extracted by aqua regia, AR) and available (extracted by ethylenediaminetetraacetate, EDTA) micronutrient fraction, were used for modelling of micronutrient availability and for final model validation. The modelling micronutrient available fraction was created in 3 steps: (1) regression models of total (AR) and available (EDTA) micronutrients (Fe, Zn, Mn) concentration based on analytical results of soil pH, SOM, AR and EDTA micronutrients fractions; (2) prediction of the available micronutrients fraction (EDTA) based on the soil pH and SOM; (3) model validation using new data set with analytical results of soil pH, SOM, AR and EDTA. The model predicts that moderate micronutrients availability could be expected on 48.45 % (42,972.25 out of 88,714.46 ha) of arable land on average for Fe, Zn and Mn. A high availability could be on 29,32 % (25.982 ha) of arable land on average, but a very significant difference was found among Fe (47,37 %), Mn (39,01 %) and Zn (1,57 %) arable land with high availability. The most important prediction is the one that claims insufficient availability of micronutrient could be expected on 19,579.87 ha in average, what is 22.26 % of arable land. But low Fe availability was predicted on only 2.79 % (2,479,3 ha), significantly more land (22.60 %, 20,035.40 ha) with low Mn availability and the highest percentage (41,4 %) of soil with insufficient Zn availability (36,764.91 out of 88,714.46 ha). The validation shows the highest model accuracy for Zn and the lowest for Fe availability prediction

Keywords

References

  1. Official Gazette, Regulation on protection of agricultural land in Croatia (Government of the Republic of Croatia, Zagreb, 47/19, 2019)
  2. Official Gazette, Law about agricultural land in Croatia (Government of the Republic of Croatia, Zagreb, 20/18, 2018)
  3. G.E.J. Fisher, Turk. J. Agric. For. 32, 221-233 (2008)
  4. Z. Györi, Cereal Res. Commun. 34, 461-466 (2006)
  5. A. Garcia, A.F. Deiorio, M. Barros, M. Bargiela, A. Rendina, Commun. Soil. Sci. Plan.19-20, 1777-1792 (1997)
  6. Z. Rengel, Handbook of soil acidity (Dekker Inc., New York, Basel, 2003)
  7. Z. Lončarić, K. Karalić, B. Popović, D. Rastija, M. Vukobratović, Cereal Res. Commun. 36 Suppl., 331-334 (2008)
  8. V. Ivezić, B.R. Singh, A.R. Almås, Geoderma 170, 89-95 (2012)
  9. V. Ivezić, B.R. Singh, A.R. Almås, Z. Lončarić, Acta. Agric. Scand. B 6, 747–759 (2011)
  10. M. Antunović, V. Kovačević, M. Rastija, Z. Zdunić, Poljoprivreda 9, 9-14 (2003)
  11. K. Karalić, Z. Lončarić, V. Ivezić, B. Popović, M. Engler, D. Kerovec, V. Zebec, Works Fac. For. Sarajevo 21, 263-269 (2016)
  12. Z. Lončarić, B. Popović, K. Karalić, M. Rékási, V. Kovačević, Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World (IUSS, Brisbane, 2010)
  13. M. Romić, D. Romić, Environ. Geol. 43, 795-805 (2003)
  14. J. Halamić, L. Galović, M. Šparica, Geol. Croat. 56/2, 215-232 (2003)
  15. Z. Lončarić, A. Gross Bošković, N. Parađiković, V. Rozman, Z. Kralik, R. Baličević, V. Bursić, S. Miloš Utjecaj poljoprivrede na kakvoću hrane u pograničnome području (Faculty of Agriculture in Osijek, Osijek, 2015)
  16. Z. Jurković, V. Kovačević, Z. Lončarić, Z. Zdunić, Cereal Res. Commun. 34, 525-528 (2006)
  17. Z. Lončarić, B. Popović, K. Karalić, Z. Jurković, A. Nevistić, M. Engler, Med. Glas. 9, 97-103 (2012)
  18. K. Karalić, Z. Lončarić, B. Popović, V. Zebec D. Kerovec, Poljoprivreda 19, 59-64 (2013)
  19. B.J. Alloway, Heavy Metals in Soils (Blackie Academic and Professional, Glasgow, 1995)
  20. M.H. Feng, X.Q. Shan, S. Zhang, B. Wen, Environ. Pollut. 137, 231-240 (2005)
  21. Å.R. Almås, P. Lombnaes, T.A. Song, J. Mulder, Chemosphere 62, 1647-1655 (2005)
  22. N.D. Kim, J.E. Ferguson, Sci. Total Environ. 105, 191-209 (1991)
  23. S. Malekan, R. Dams, L. Moens, Anal. Chim. Acta 543, 117- 123 (2005)
  24. V. Ivezić, B.R. Singh, V. Gvozdić, Z. Lončarić, Soil. Sci. Soc. Am. J. 79, 1629-1637 (2015)
  25. ISO, Soil quality – Determination of pH. ISO 10390 (International Standard Organisation, Geneva, 1994)
  26. ISO, Soil quality – Determination of organic carbon by sulfochromic oxidation. ISO 14235 (International Standard Organisation, Geneva, 1998)
  27. H. Egner, H. Riehm, W.R. Domingo, K. Lantbr. Hogsk. Annlr. W.R. 26, 199-215 (1960)
  28. ISO, Soil quality – Extraction of trace elements soluble in aqua regia. ISO 11466 (International Standard Organisation, Geneva, 1995)
  29. F.J. Trierweiler, W.L. Linsay, Proc. Soil. Sci. Soc. Am. 33, 49- 54 (1969)
  30. ISO, Soil quality – Pretreatment of samples for physico-chemical analyses. ISO 11464 (International Standard Organisation, Geneva, 1994)
  31. ArcGis, ArcGis desktop version 9.2. (Redlands, CA: ESRI, 2006)
  32. T.L. Liu, K.W. Juang, D.Y. Lee, Soil Sci. Soc. Am. J. 70, 1200–1209 (2006)

Article full text

Download PDF