DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

Two-dimensional WS2 layer in sensor application

  • 1 Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9, 845 07 Bratislava, Slovak Republic
  • 2 Institute of Electronics, Bulgarian Academy of Sciences, 72, Tzarigradsko chaussee blvd., Sofia 1784, Bulgaria

Abstract

This paper presents a study on the current state of research and use of dichalcogenides of transition metals, particularly WS2. The properties of WS2 in the context of its application in sensor technology and highlight the anticipated advantages of nanostructured disulfides are discussed.

Keywords

References

  1. Chhowalla, M., et al. (2013). Nature Chemistry, 5(4), 263-275.
  2. Wang, Q. H., et al. (2012). Nature Nanotechnology, 7(11), 699- 712.
  3. Voiry, D., et al. (2015). Chemical Society Reviews, 44(9), 2702- 2712.
  4. Huh, W., et al. (2020). Advanced Materials, 32(33), 2002092.
  5. Zhang, X., et al. (2019). Nature, 566(7745), 368-372.
  6. Shi, Y., et al. (2015). Chemical Society Reviews, 44(9), 2744- 2756.
  7. Zhou, J., et al. (2018). Nature, 556(7701), 355-359.
  8. Liu, L., et al. (2018). Nature Materials, 17(12), 1108-1114.
  9. Tang, B., et al. (2019). Advanced Materials, 31(27), 1900862.
  10. Wang, X., et al. (2014). ACS Nano, 8(11), 11394-11400.
  11. Zeng, M., et al. (2018). Chem. Reviews, 118(13), 6236-6296.
  12. Mak, K. F., & Shan, J. (2016). Nature Photonics, 10(4), 216- 226.
  13. Wang, X., et al. (2015). Advanced Materials, 27(42), 6575- 6581.
  14. Broers A.N., et al. (1996). Microelectronic Engineering, 32, 131.
  15. Hatzakis M. (1969). J. Electrochem. Soc., 116, 1033-37.
  16. David B. Cordes, et al. (2010). Chem. Rev., 110 (3), 2081– 2173.
  17. Grigorescu A. E., et al. (2007). J. Micro/Nano- lithogr. MEMS, MOEMS, 6, 043006.
  18. Grigorescu A.E., et al. (2015). Nanotechnology, 20, 292001.
  19. Yamazaki K., et al. (2004). Japan. J. Appl. Phys., 43, 3767.
  20. Maile B. E., et al. (2000). Japan. J. Appl. Phys., 39, 6836
  21. Yang J. K. W., et al. (2005). IEEE Trans. Appl. Supercond., 15, 626.
  22. Rosfjord K. M., et al. (2006). Opt. Express, 14, 527.
  23. Lipson M., Nanotechnology, 15 (10), 622–627.
  24. Kaschlik K., et al. (1992). Maskentechnik für Mikroelektronik- Bausteine Tagung München, 29. 10. 1992
  25. Cho, S., et al. (2015). Science, 349(6248), 625-628.
  26. Kappera, R., et al. (2014). Nature Materials, 13(12), 1128- 1134.
  27. Ovchinnikov D., et al. (2015). ACS Nano, 8 (8), 8174–8181.
  28. Donggyu Lee, et al. (2025). Appl. Phys. Lett., 126, 011903.
  29. Changyong Lan, et al. (2021). Adv. Electron. Mater., 7, 2000688-724.
  30. Qi Fu, et al. (2015). RSC Advances, 5(21), 15795-799.
  31. Piccinini G, et al. (2020). 2D Mater., 7, 014002.
  32. Hotovy I., et al. (2021). Applied Surface Science, 544, 148719.
  33. Bag, A., et al. (2019). J. Mater. Chem. C, 7, 13367–13383.
  34. Pham, P.V., et al. (2022). Chem. Rev., 122, 6514–6613.
  35. Bag, A., et al. (2021). Adv. Mater. Technol., 6, 2000883.
  36. Mathew, M. et al. (2021). J. Mater. Chem. C, 9, 395–416.
  37. Cao, J. et al. (2021). Research, 9863038.
  38. Kumar, R., et al. (2020). Sens. Actuators A Phys., 303, 111875.
  39. Joshi, N., et al. (2018).Microchim. Acta, 185, 213.
  40. Qin, Z., et al. (2017). Appl. Surf. Sci., 414, 244–250.

Article full text

Download PDF