DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”
2D graphene layers in chemiresistive sensors
- 1 Institute of Electronics, Bulgarian Academy of Sciences, 72, Tzarigradsko chaussee blvd., Sofia 1784, Bulgaria
- 2 Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9, 845 07 Bratislava, Slovak Republic
Abstract
In this paper, a two-dimensional (2D) material graphene with exceptional electronic and mechanical properties is discussed as a promising candidate for chemiresistive sensor applications. High surface area and superior charge carrier mobility of graphene enable rapid and sensitive detection of gaseous analytes, making it an attractive alternative to conventional metal oxide semiconductor (MOS) sensors. The review of recent advancements in graphene-based chemiresistive gas sensors is done, highlighting their operational principles, fabrication techniques, and performance enhancements through material modifications such as reduced graphene oxide (rGO). Additionally, we examine the application of graphene sensors in environmental monitoring, where their ability to detect pollutants like NO₂ , NH₃ , and CO₂ with high sensitivity and low power consumption provides a significant advantage over traditional sensing technologies. Despite these advancements, challenges such as selectivity, standardization, and sensor stability remain critical areas for future research.
Keywords
References
- A.K. Sharma, S. Sardana, and A. Mahajan, Recent Advances in Graphene and Graphene-Based Technologies, (Eds. A. Chandran, N.V. Unnikrishnan, M.K. Jayaraj, R.E. John, and J. George), IOP Publishing, ch. 13 Graphene based sensors, 13-1–13-23 (2023).
- W. Tian, X. Liu, and W. Yu. Appl. Sci. 8 1118 (2018).
- T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, and L. Zhang, Nano-Micro Lett. 8 95–119 (2016).
- M. Gautam and A.H. Jayatissa, Mater. Sci. Eng. C 31 1405–1411 (2011).
- X. Zhou, X. Wang, B. Wang, Z. Chen, C. He, and Y. Wu, Sens. Actuators B Chem. 193 340–348 (2014).
- A.D. Smith et al., RSC Adv. 7 22329–22339 (2017).
- M. Shafiei, P.G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R.B. Kaner, K. Kalantar-Zadeh, and W. Wlodarski, J. Phys. Chem. C 114 13796–13801 (2010).
- F.L. Meng, Z. Guo, and X.J. Huang, TrAC Trends Anal. Chem. 68 37–47 (2015).
- M. Gautam and A.H. Jayatissa, Solid-State Electron. 78 159–165 (2012).
- J.L. Johnson, A. Behnam, S.J. Pearton, and A. Ural, Adv.Mater. 22 4877–4880 (2010).
- F.L. Meng, H.H. Li, L.T. Kong, J.Y. Liu, Z. Jin, W. Li, Y. Jia, J.H. Liu, and X.J. Huang, Anal. Chim. Acta. 736 100–107 (2012).
- S. Bai, Y. Zhao, J. Sun, Y. Tian, R. Luo, D. Li, and A. Chen, Chem. Commun. 51 7524–7527 (2015).
- W. Yuan, A. Liu, L. Huang, C. Li, and G. Shi, Adv. Mater. 25 766–771 (2013).
- F. Khurshid, M. Jeyavelan, T. Hussain, M.S.L. Hudson, and S. Nagarajan, Mater. Chem. Phys. 242 122485 (2020).
- C. Mackin, V. Schroeder, A. Zurutuza, C. Su, J. Kong, T.M. Swager, and T. Palacios, ACS Appl. Mater. Interfaces 10 16169–16176 (2018).
- J.B. Sanchez, F. Berger, M. Fromm, and M.H. Nadal, Sens. Actuators B Chem. 119 227–233 (2006).
- A.K. Sharma, S. Sardana, and A. Mahajan, Recent Advances in Graphene and Graphene-Based Technologies, (Eds. A. Chandran, N.V. Unnikrishnan, M.K. Jayaraj, R.E. John, and J. George), IOP Publishing, 13-7 (2023).
- W. Li, W. Qi, L. Cai, C. Li, Y. Sun, M. Sun, X. Yang, L. Xiang, D. Xie, and T. Ren, Chem. Phys. Lett. 738 136873 (2020).
- B. Cho et al., J. Mater. Chem. C 2 5280–5285 (2014).
- I. Karaduman, E. Er, H. Çelikkan, N. Erk, and S. Acar, J. Alloys Compd. 722 569–578 (2017).
- Q. Feng, X. Li, and J. Wang, Sens. Actuators B Chem. 243 1115–1126 (2017).
- Y. Chen, W. Zhang, and Q. Wu, Sens. Actuators B Chem. 242 1216–1226 (2017).
- Z. Ye, H. Tai, T. Xie, Y. Su, Z. Yuan, C. Liu, and Y. Jiang, Mater. Lett. 165 127–130 (2016).
- S. Bandi, V. Hastak, D. Peshwe, and A. Srivastav, Bull. Mater. Sci. 41 115 (2018).
- D. Zhang, H. Chang, P. Li, and R. Liu, J. Mater. Sci. Mater. Electron. 27 3723–3730 (2016).
- D. Zhang, N. Yin, and B. Xia, J. Mater. Sci. Mater. Electron. 26 5937–5945 (2015).
- A.D. Ugale, G.G. Umarji, S.H. Jung, N.G. Deshpande, W. Lee, H.K. Cho, and J.B. Yoo, Sens. Actuators B Chem. 308 127690 (2020).
- P.G. Su and S.L. Peng, Talanta 132 398–405 (2015).
- H. Meng, W. Yang, K. Ding, L. Feng, and Y. Guan, J. Mater. Chem. A 3 1174–1181 (2015).
- Z. Li, Y. Liu, D. Guo, J. Guo, and Y. Su, Sens. Actuators B Chem. 271 306–310 (2018).
- S. Bai, J. Guo, J. Sun, P. Tang, A. Chen, R. Luo, and D. Li, Ind. Eng. Chem. Res. 55 5788–5794 (2016).
- Z. Ye, Y. Jiang, H. Tai, and Z. Yuan, Integr. Ferroelectr. 154 73–81 (2014).
- A. Chandran, N.V. Unnikrishnan, M.K. Jayaraj, R.E. John, and J. George, (Eds.), Recent Advances in Graphene and Graphene-Based Technologies, IOP Publishing, (2023).