MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

RESEARCH OF MATHEMATICAL MODELS OF LITHIUM-ION STORAGES

  • 1 Faculty of Mechanics and Energy – Ukrainian State University of Railway Transport, Ukraine
  • 2 Electrical Engineering Faculty – National Technical University «Kharkiv Polytechnic Institute», Ukraine

Abstract

In modern industry self-powered devices are an important component. For such devices, the most important component is the energy storage device used, most often based on lithium-ion technology. The article presents an equivalent circuits of lithium-ion batteries and a mathematical description of charge-discharge processes. Investigated in Matlab / SimPowerSystems built-in library component of lithium-ion battery. Mathematical models of equivalent circuits of different types of lithium-ionic batteries have been analyzed.

Keywords

References

  1. Serdnykh D. V., Tomashevsky Yu. B. Modeling of lithiumion batteries in energy-saving complexes of autonomous objects. Proceedings of the South Ural State University. 2017. Vol. 17, Issue 3. P. 86–94. DOI: 10.14529/power170310.
  2. Franco V., Zacharopoulou T., Hammer J., Schmidt H., Mock P., Weiss M., Samaras V. Evaluation of exhaust emissions from three diesel-hybrid cars and simulation of after-treatment systems for ultralow real-world NOx emissions. Environ. Sci. Technol. 2019. Vol. 50, Issue 37. P. 13151–13159. DOI: 10.1021/ acs.est.6b03585.
  3. Levay P. Z, Drossinos Y., Thiel C. The effect of fiscal incentives on market penetration of electric vehicles: a pairwise comparison of total cost of ownership. Energy Pol. 2017. Vol. 105. P. 524–533. DOI: 10.1016/j.enpol.2017.02.054.
  4. Nerubatskyi V., Plakhtii O., Ananіeva O., Zinchenko O. Analysis of the Smart Grid concept for DC power supply systems. International scientific journal «INDUSTRY 4.0». 2019. Vol. 4, Issue 4. P. 179–182.
  5. Giechaskiel B., Riccobono F., Vlachos T., Mendoza-Villafuerte P., Suarez-Bertoa R., Fontaras G., Bonnel P., Weiss M.Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS). Frontiers in Environmental Science. 2015. Vol. 3. P. 82–83. DOI: 10.3389/fenvs.2015.00082.
  6. Hu X., Zou C., Zhang C., Li Y. Technological developments in batteries: a survey of principal roles, types, and management needs. IEEE Power Energy Mag. 2017. Vol. 15. P. 20–31.
  7. Safari M. Battery electric vehicles: looking behind to move forward. Energy Pol. 2017. Vol. 115. P. 54–65. DOI: 10.1016/j.enpol.2017.12.053.
  8. Plakhtii O., Nerubatskyi V., Karpenko N., Hordiienko D.,Butova O., Khoruzhevskyi H. Research into energy characteristics of single-phase active four-quadrant rectifiers with the improved hysteresis modulation. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 5, No. 8 (101). P. 36–44. DOI: 10.15587/1729-4061.2019.179205.
  9. Weiss M., Zerfass A., Helmersb E. Fully electric and plug-in hybrid cars. An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions. Clean Prod. 2019. Vol. 212. P. 1478–1489. DOI: 10.1016/j.jclepro.2018.12.019.
  10. Hardman S., Chandan A., Tal G., Turrentine T. The effectiveness of financial purchase incentives for battery electric vehicles – a review of the evidence. Renew. Sustain. Energy Rev. 2017. Vol. 80. P. 1100–1111. DOI: 10.1016/j.rser.2017.05.255.
  11. Ciez R. E., Whitacre J. F. The cost of lithium is unlikely to upend the price of Li-ion storage systems. Power Sources. 2016. Vol. 320. P. 310–313. DOI: 10.1016/j.jpowsour.2016.04.073.
  12. Plakhtii O., Nerubatskyi V., Sushko D., Ryshchenko I., Tsybulnyk V., Hordiienko D. Improving energy characteristics of AC electric rolling stock by using the three-level active fourquadrant rectifiers. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 4, No. 8 (100). P. 6–14. DOI: 10.15587/1729-4061.2019.174112.
  13. Plakhtii O. A., Nerubatskyi V. P., Hordiienko D. A., Tsybulnyk V. R. Analysis of the energy efficiency of a two-level voltage source inverter in the overmodulation mode. Scientific Bulletin of National Mining University. 2019. No. 4 (172). P. 68– 72. DOI: 10.29202/nvngu/2019-4/9.
  14. Xu B., Oudalov A., Ulbig A., Andersson G., Kirschen D. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Transactions on Smart Grid. 2018. No. 9 (2). Р. 1131–1140. DOI: 10.1109/tsg.2016.2578950.
  15. Bryden T. S., Holland A., Hilton G., Dimitrov B., de Leon Albarran C. P., Cruden A. Lithium-ion degradation at varying discharge rates. Energy Procedia. 2018. Vol. 151. P. 194–198. DOI: 10.1016/j.egypro.2018.09.047.
  16. Plakhtii O., Nerubatskyi V., Ryshchenko I., Zinchenko O., Tykhonravov S., Hordiienko D. Determining additional power losses in the electricity supply systems due to current's higher harmonics. Eastern-European Journal of Enterprise Technologies, 2019. Vol. 1, No. 8 (97). P. 6–13. DOI: 10.15587/1729-4061.2019. 155672.
  17. Saldana G., Martín J. I., Zamora I., Asensio F. J., Onederra O. Analysis of the current electric battery models for electric vehicle simulation. Energies. 2019. No. 12 (14). 27 p. DOI: 10.3390/en12142750.

Article full text

Download PDF