MATERIALS

Phase transformations in titanium biomedical materials

  • 1 University of Zagreb, Faculty of Metallurgy, Croatia

Abstract

New types of materials have been developed for years, including titanium-based alloys, which have the potential for various applications. Due to the combination of their very good mechanical properties with outstanding corrosion resistance and excellent biocompatibility, titanium alloys are developing into materials that can be used in aerospace, automotive, energy systems and especially in medicine. A fundamental understanding of the phase transformations that occur at high temperatures in all these cases, especially during cooling from elevated temperatures, is necessary to achieve optimal mechanical properties of titanium alloys. It is known that the mechanical properties of titanium alloys depend on a significant extent upon the microstructure. Therefore, it is very important to understand the nature of the phase transformations that occur under different heat treatment conditions the leads to microstructure development of titanium alloys microstructure. The aim of this article is to review the current state of knowledge and previous research and to point out some of the most interesting phase transformations of titanium alloys.

Keywords

References

  1. M. Niinomi, M. Nakai, J. Hieda, Acta Biomaterialia, 8, 3888- 3903 (2012)
  2. L.-C. Zhang, L.-Y. Chen, Adv. Eng. Mater. 2019, 1- 29
  3. H. Okamoto, J. of Phase Equilibria 26, 49-50 (2002)
  4. H.-D. Jung, Metals 11, 1945 (2021)
  5. M. Salama, M. F. Vaz, R. Colaço, C. Santos, M. Carmezim, J. Funct. Biomater. 13, 72 (2022)
  6. H. Hermawan, Prog. Biomater. 7, 93-110 (2018)
  7. F. Zivic, N. Grujović, E. Pellicer, J. Sort, S. Mitrovic, D. Adamovic, M. Vulovic, Biomaterials in Clinical Practice, 225-280 (2017)
  8. R. Kandimalla, J. Vallamkondu, E. B. Corgiat, K. D. Gill, Brain Pathol. 26, 139–154 (2015)
  9. M. Najafizadeh, S. Yazdi, M. Bozorg, M. Ghasempour- Mouziraji, M. Hosseinzadeh, M. Zarrabian, P. Cavaliere, J. Alloys Compd, 3, 100019 (2024)
  10. T. R. Bieler, R. M. Trevino, L. Zeng, Encyclopedia of Condensed Matter Physics, 65-76 (2005)
  11. C. Veiga, J.P. Davim and A.J.R. Loureiro, Rev. Adv. Mater. Sci. 32, 14-34 (2012)
  12. D. Xu, Z. Lu, T. Wang, S. Wang, Y. Jiang, Z. Xu, Z. Bi, S. Geng, Mater. Des. 205, 1-10 (2021)
  13. K. S, M. Sahari, M. Ishak, B. A. Khidhir, IJSR, 3, 1-12 (2014)
  14. L. C. Tsao, Mat. Res. 23, 1-9 (2020)
  15. C. S. Pitchi, A. Priyadarshini, G. Sana, S. Kumar Reddy Narala, Mater. Today Proc. 26, 3297-3304 (2020)
  16. S. Cao, Y. Zou, C. V. S. Lim, X. Wu, Adv. Manuf. 2, 1-20 (2021)
  17. G. Lütjering, J. C. Williams, A. Gysler, Microstructure and Properties of Materials, 1-77 (2000)
  18. S. Bahl, S. Suwas, K. Chatterjee, Int. Mater. Rev. 66, 114-139 (2021)
  19. L. Huang, C.-M. Li, C.-L. Li, S.-X. Hui, Y. Yu, M.-J. Zhao, S.- G. Guo, J.-J. Li, Trans. Nonferrous Met. Soc. 32, 3835-3859 (2022)
  20. D. Banerjee, Acta Mater. 61, 844-879 (2013)
  21. K. Pałka, R. Pokrowiecki, Adv. Eng. Mater. 20, 1700648 (2018)
  22. A. Sinha, S. Sanyal, N. R. Bandyopadhyay, Comprehensive Materials Finishing, 2, 288-336 (2017)
  23. R. P. Kolli, A. Devaraj, Metals, 8, 506 (2018)
  24. A. P. Mouritz, Introduction to Aerospace Materials, 202-223 (2012)
  25. S. O. Jeje, T. Marazani1, J. O. Obiko, M. B. Shongwe, MATEC Web of Conferences 406, 03014 (2024)
  26. X.-L. Ma, K. Matsugi, Y. Liu, Y. Liu, Metals, 14, 81 (2024)
  27. L. C. Zhang, L. Y. Chen, Adv. Eng. Mater. 21, 1801215 (2019)
  28. C. Veiga1, J. P. Davim, A. J. R. Loureiro, Rev. Adv. Mater. Sci. 32, 133-148 (2012)
  29. S. Semiatin, V. Seetharaman, I. Weiss, JOM. 49, 33 (1997)
  30. C. N. Elias, L. Meirelles, Expert Rev. Med. Devices. 7, 241-256 (2010)
  31. F. A. Anene, C. N. Aiza Jaafar, I. Zainol, M. A. Azmah Hanim, M. T. Suraya, J. Mech. Eng. Sci. 235, 3792-3805 (2020)
  32. I. Weiss, S. L. Semiatin, Mater. Sci. amp; Eng. A. 243, 46-65 (1998)
  33. P. Pesode, S. Barve, Journal of Engineering and Applied Science, 70, 25 (2023)
  34. L. Bolzoni, M. Alqattan, L. Peters, Y. Alshammari, F. Yang, Ternary, Sci. Rep. 10, 22201 (2020)
  35. E. O. Ezugwu, R. B. D. Silva, W. F. Sales, A. R. Machado, Encyclopedia of Sustainable Technologies, 2, 487-506 (2017)
  36. S. Lascano, C. Arévalo, I. Montealegre-Melendez, S. Muñoz, J. A. Rodriguez-Ortiz, P. Trueba, Y. Torres, Porous, Appl. Sci, 9, 982 (2019)
  37. E. Zhang, X. Zhao, J. Hu, R. Wang, S. Fu, G. Qin, Bioact. Mater. 6, 2569-2612 (2021)
  38. M. R. Bateni, J. A. Szpunar, F. Ashrafizadeh, M. Zandrahimi, Tribol. 55-62 (2003)
  39. H. Okamoto, JPED, 26, 549-550 (2002)
  40. M. R. Akbarpour, H. M. Mirabad, A. Hemmati, H. S. Kim, Prog. Mater. Sci. 127, 100933 (2022)
  41. P. Canale, C. Servant, Z. Metallkd. 93, 273-276 (2002)
  42. P. Qin, Y. Liu, T. B. Sercombe, Y. Li, C. Zhang, C. Cao, L.-C. Zhang, Biomater. Sci. Eng. 4, 2633-2642 (2018)
  43. Y. D. Zhu, M. F. Yan, Y. X. Zhang, C. S. Zhang, Comput. Mater. Sci. 123, 70-78 (2016)
  44. E. Zhang, X. Wang, M. Chen, B. Hou, Mater. Sci. Eng. C. 69, 1210-1221 (2016)
  45. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, T. Okabe, Dent. Mater. 19, 174-181 (2003)
  46. Y. Takada, H. Nakajima, O. Okuno, Dent. Mater. 20, 34-52 (2001)
  47. X. Liu, S. Chen, J. K. H. Tsoi, J. P. Matinlinna, Regen. Biomater. 4, 315-323 (2017)
  48. A. O. F. Hayama, P. N. Andrade, A. Cremasco, R. J. Contieri, C. R. M. Afonso, R. Caram, Mater. Des. 55, 1006-1013 (2014)

Article full text

Download PDF