DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”
Isentropic analysis of the complex three cylinder steam turbine from municipal solid waste power plant
- 1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
- 2 Department of maritime sciences, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia
Abstract
In this paper are presented isentropic analysis results of a steam turbine and each of its cylinders which operate in Municipal Solid Waste (MSW) power plant. Low Pressure Cylinder (LPC) which produces the highest real mechanical power has the lowest isentropic loss of all cylinders equal to 4344.75 kW, while High Pressure Cylinder (HPC) which produces the lowest real mechanical power has the highest isentropic loss of all cylinders equal to 5204.54 kW. Isentropic losses and isentropic efficiencies are reverse proportional, because the cylinder with the lowest isentropic loss (LPC) has the highest isentropic efficiency equal to 88.92%, while the cylinder with the highest isentropic loss (HPC) has the lowest isentropic efficiency equal to 84.58%. Surprisingly, isentropic efficiency of the Intermediate Pressure Cylinder (IPC) is equal to 86.80% only, which is higher in comparison to HPC but notably lower than LPC. The observed turbine strongly differs from other comparable steam turbines from the literature where IPC has notably higher isentropic efficiencies than both HPC and LPC. Whole observed steam turbine produces real mechanical power equal to 97513 kW, while its isentropic efficiency is equal to 86.87%.
Keywords
References
- Tanuma, T. (Ed.). (2022). Advances in steam turbines for modern power plants. Woodhead Publishing.
- Elčić, Z. (1995). Steam turbines. ABB, Karlovac, National and University Library Zagreb.
- Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
- Kostyuk, A., & Frolov, V. (Eds.). (1988). Steam and gas turbines. Mir Pub.
- Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
- Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
- Adibhatla, S., & Kaushik, S. C. (2014). Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Applied thermal engineering, 73(1), 51-65. (doi:10.1016/j.applthermaleng.2014.07.030)
- Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
- Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
- Anđelić, N., Lorencin, I., Mrzljak, V., & Car, Z. (2024). On the application of symbolic regression in the energy sector: Estimation of combined cycle power plant electrical power output using genetic programming algorithm. Engineering applications of artificial intelligence, 133, 108213. (doi:10.1016/j.engappai.2024.108213)
- Si, N., Zhao, Z., Su, S., Han, P., Sun, Z., Xu, J., ... & Xiang, J. (2017). Exergy analysis of a 1000 MW double reheat ultrasupercritical power plant. Energy Conversion and Management, 147, 155-165. (doi:10.1016/j.enconman.2017.05.045)
- Poljak, I., Mrzljak, V., Senčić, T., & Pastorčić, D. (2024). Isentropic and exergy analyses of marine steam turbine segments at several loads. Scientific Journal of Maritime Research-Pomorstvo, 38(1). (doi:10.31217/p.38.1.8)
- Jiping, L., Wei, H., Xin, W., Xiaoqu, H., Daotong, C., & Junjie, Y. (2015). Theoretical investigation on the partial load feedwater heating system with thermal vapor compressor in a coal-fired power unit. Energy Procedia, 75, 1102-1107. (doi:10.1016/j.egypro.2015.07.500)
- Mrzljak, V., Lorencin, I., Anđelić, N., & Car, Z. (2021). Thermodynamic Analysis of a Condensate Heating System from a Marine Steam Propulsion Plant with Steam Reheating. Journal of Marine Science and Application, 20, 117-127. (doi:10.1007/s11804-021-00191-5)
- Adibhatla, S., & Kaushik, S. C. (2017). Energy, exergy, economic and environmental (4E) analyses of a conceptual solar aided coal fired 500 MWe thermal power plant with thermal energy storage option. Sustainable Energy Technologies and Assessments, 21, 89- 99. (doi:10.1016/j.seta.2017.05.002)
- Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8-9), 1377-1385. (doi:10.1016/j.applthermaleng.2006.10.029)
- Khanmohammadi, S., Azimian, A. R., & Khanmohammadi, S. (2013). Exergy and exergo–economic evaluation of Isfahan steam power plant. International Journal of Exergy, 12(2), 249-272. (doi:10.1504/IJEX.2013.053386)
- Esmaeilion, F., Ahmadi, A., & Dashti, R. (2021). Exergyeconomic- environment optimization of the waste-to-energy power plant using multi-objective particle-swarm optimization (MOPSO). Scientia Iranica, 28(5), 2733-2750.(doi:10.24200/sci.2021.55633.4323)
- Mohammed, M. K., Al Doori, W. H., Jassim, A. H., Ibrahim, T. K., & Al-Sammarraie, A. T. (2019). Energy and exergy analysis of the steam power plant based on effect the numbers of feed water heater. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 56(2), 211-222.
- Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Thermodynamical analysis of high-pressure feed water heater in steam propulsion system during exploitation. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 68(2), 45-61. (doi:10.21278/brod68204)
- Espatolero, S., Romeo, L. M., & Cortés, C. (2014). Efficiency improvement strategies for the feedwater heaters network designing in supercritical coal-fired power plants. Applied Thermal Engineering, 73(1), 449-460. (doi:10.1016/j.applthermaleng.2014.08.011)
- Mrzljak, V., Poljak, I., & Medica-Viola, V. (2016). Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period. Pomorstvo, 30(2), 133-140. (doi:10.31217/p.30.2.6)
- Uysal, C., Kurt, H., & Kwak, H. Y. (2017). Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120. (doi:10.1016/j.ijthermalsci.2017.03.010)
- Leyzerovich, A. S. (2021). Steam turbines for modern fossil-fuel power plants. River Publishers.
- Mrzljak, V., Šegota, S. B., Kocijel, L., & Prpić-Oršić, J. (2020). Energy (isentropic) analysis of three-cylinder steam turbine with reheating. Innovations, 8(1), 37-40.
- Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
- Mrzljak, V., & Poljak, I. (2019). Energy analysis of main propulsion steam turbine from conventional LNG carrier at three different loads. NAŠE MORE: znanstveni časopis za more I pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
- Kanoğlu, M., Çengel, Y. A. & Dincer, I. (2012). Efficiency Evaluation of Energy Systems. Springer Briefs in Energy. (doi:10.1007/978-1-4614-2242-6)
- Blažević, S., Mrzljak, V., Anđelić, N., & Car, Z. (2019). Comparison of energy flow stream and isentropic method for steam turbine energy analysis. Acta Polytechnica, 59(2), 109-125. (doi:10.14311/AP.2019.59.0109)
- Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
- Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
- Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
- Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)
- Baressi Šegota, S., Mrzljak, V., Anđelić, N., Poljak, I., & Car, Z. (2023). Use of Synthetic Data in Maritime Applications for the Problem of Steam Turbine Exergy Analysis. Journal of Marine Science and Engineering, 11(8), 1595. (doi: 10.3390/jmse11081595)
- Talebi, S., & Norouzi, N. (2020). Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm. Nuclear Engineering and Technology, 52(12), 2928-2938. (doi:10.1016/j.net.2020.05.011)
- Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of marine steam turbine conventional exergy analysis by neural network application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)