MACHINES

Exergy analysis of a complex four-cylinder steam turbine

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 Maritime Department, University of Dubrovnik, Croatia

Abstract

This paper presents an exergy analysis of a complex four-cylinder steam turbine, which operate in a coal-fired power plant. Analyzed steam turbine consists of high pressure single flow cylinder (HPC), intermediate pressure dual flow cylinder (IPC) and two low pressure dual flow cylinders (LPC1 and LPC2). The highest part of cumulative mechanical power (787.87 MW) is developed in IPC (389.85 MW) and HPC (254.67 MW), while both low pressure cylinders develop a small part of cumulative mechanical power (70.29 MW in LPC1 and 73.06 MW in LPC2). Cylinder exergy destruction (cylinder exergy power loss) continuously increases as the steam expands through the turbine. The lowest exergy destruction has HPC (13.07 MW), followed by the IPC (20.95 MW), while the highest exergy destructions are noted in low pressure cylinders (24.37 MW in LPC1 and 27.17 MW in LPC2). Cylinder exergy efficiency continuously decreases as the steam expands through the turbine. The highest exergy efficiency has HPC (95.12%), followed by the IPC (94.90%) and LPC1 (74.25%), while the lowest exergy efficiency of all cylinders is obtained in LPC2 (72.89%). Exergy efficiencies of LPC1 and LPC2 are much lower in comparison to other low pressure dual flow cylinders from comparable steam power plants. The whole observed steam turbine has exergy
efficiency equal to 90.20%.

Keywords

References

  1. Zhao, Z., Su, S., Si, N., Hu, S., Wang, Y., Xu, J., ... & Xiang, J. (2017). Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant. Energy, 119, 540-548. (doi:10.1016/j.energy.2016.12.072)
  2. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/j.energy.2016.06.071)
  3. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  4. Kumar, V., Pandya, B., & Matawala, V. (2019). Thermodynamic studies and parametric effects on exergetic performance of a steam power plant. International Journal of Ambient Energy, 40(1), 1-11. (doi:10.1080/01430750.2017.1354326)
  5. Mrzljak, V., Senčić, T., & Ţarković, B. (2018). Turbogenerator steam turbine variation in developed power: Analysis of exergy efficiency and exergy destruction change. Modelling and Simulation in Engineering, 2018. (doi:10.1155/2018/2945325)
  6. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392- 403. (doi:10.1016/j.energy.2018.08.119)
  7. Mrzljak, V., & Poljak, I. (2019). Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads. NAŠE MORE: znanstveno-stručni časopis za more i pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
  8. Behrendt, C., & Stoyanov, R. (2018). Operational Characteristic of Selected Marine Turbounits Powered by Steam from Auxiliary Oil-Fired Boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  9. Fernández, I. A., Gómez, M. R., Gómez, J. R., & Insua, Á. B. (2017). Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 1395-1411. (doi:10.1016/j.rser.2016.09.095)
  10. Hafdhi, F., Khir, T., Yahyia, A. B., & Brahim, A. B. (2015). Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory. Energy Conversion and Man., 106, 1230-1241. (doi:10.1016/j.enconman.2015.10.044)
  11. Tanuma, T. (Ed.). (2017). Advances in Steam Turbines for Modern Power Plants. Woodhead Publishing.
  12. Mrzljak, V., Poljak, I., & Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 70(1), 59-77. (doi:10.21278/brod70105)
  13. Adibhatla, S., & Kaushik, S. C. (2014). Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Applied thermal engineering, 73(1), 51-65. (doi:10.1016/j.applthermaleng.2014.07.030)
  14. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
  15. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  16. Škopac, L., Medica-Viola, V., & Mrzljak, V. (2020). Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 1-15. (doi:10.1080/01457632.2020.1744248)
  17. Mrzljak, V., Kudláček, J., Begić-Hajdarević, Đ., & Musulin, J. (2020). The Leakage of Steam Mass Flow Rate through the Gland Seals–Influence on Turbine Produced Power. Pomorski zbornik, 58(1), 39-56. (doi:10.18048/2020.58.03.)
  18. Cangioli, F., Chatterton, S., Pennacchi, P., Nettis, L., & Ciuchicchi, L. (2018). Thermo-elasto bulk-flow model for labyrinth seals in steam turbines. Tribology international, 119, 359-371. (doi:10.1016/j.triboint.2017.11.016)
  19. Medica-Viola, V., Mrzljak, V., Anđelić, N., & Jelić, M. (2020). Analysis of Low-Power Steam Turbine With One Extraction for Marine Applications. NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(2), 87-95. (doi:10.17818/NM/2020/2.1)
  20. Szargut, J. (2005). Exergy method: technical and ecological applications (Vol. 18). WIT press.
  21. Kanoğlu, M., Çengel, Y. A. & Dincer, I. (2012). Efficiency Evaluation of Energy Systems. Springer Briefs in Energy. (doi:10.1007/978-1-4614-2242-6)
  22. Mrzljak, V., Poljak, I., Prpić-Oršić, J., & Jelić, M. (2020). Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system. Pomorstvo, 34(2), 309-322. (doi:10.31217/p.34.2.12)
  23. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324- 328. (doi:10.1016/j.applthermaleng.2008.02.029)
  24. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  25. Tan, H., Shan, S., Nie, Y., & Zhao, Q. (2018). A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle. Cryogenics, 92, 84-92. (doi:10.1016/j.cryogenics.2018.04.009)
  26. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  27. Baldi, F., Ahlgren, F., Nguyen, T. V., Thern, M., & Andersson, K. (2018). Energy and exergy analysis of a cruise ship. Energies, 11(10), 2508. (doi:10.3390/en11102508)
  28. Erdem, H. H., Akkaya, A. V., Cetin, B., Dagdas, A., Sevilgen, S. H., Sahin, B., ... & Atas, S. (2009). Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48(11), 2179- 2186. (doi:10.1016/j.ijthermalsci.2009.03.007)
  29. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  30. Suresh, M.V.J.J., Reddy, K.S., & Kumar Kolar, A. (2011). ANN-GA based optimization of a high ash coal-fired supercritical power plant. Applied Energy, 88, 4867–4873.
  31. (doi:10.1016/j.apenergy.2011.06.029)
  32. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0.
  33. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)

Article full text

Download PDF