Analysis of main feedwater pump from steam power plant at three loads

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 Department of maritime sciences, University of Zadar, Croatia


This paper presents results of the Main Feedwater Pump (MFP) isentropic and exergy analyses at three power plant loads. Observed MFP is a constituent component of condensate/feedwater sub-system from conventional steam power plant. In real exploitation conditions, MFP uses mechanical power higher than 3000 kW, considering all observed power plant loads. Main isentropic and exergy parameters of the MFP at various plant loads show the same general trends (increase in power plant load simultaneously increases MFP losses and efficiencies and vice versa, from both isentropic and exergy viewpoints). Analyzed MFP has high isentropic and exergy efficiencies, considering all plant loads and ambient temperatures (at any plant load MFP isentropic efficiency is higher than 85%, while the lowest MFP exergy efficiency is equal to 89.24% at the lowest observed plant load and the highest observed ambient temperature). The change in isentropic and exergy efficiency of the MFP is small if all observed plant loads and ambient temperatures are taken into consideration.



  1. Sutton, I. (2017). Plant design and operations. Gulf Professional Publishing
  2. Mrzljak, V., Lorencin, I., Anđelić, N., & Baressi Šegota, S. (2020). Comparison of three methods for the pump energy analysis. In IV International Scientific Conference: Mathematical Modeling (pp. 5-8).
  3. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  4. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  5. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392- 403. (doi:10.1016/
  6. Mrzljak, V., Ţarković, B., & Poljak, I. (2017). Energy and exergy analysis of sea water pump for the main condenser cooling in the LNG carrier steam propulsion system. Mathematical Modeling, 1(3), 144-147.
  7. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
  8. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  9. Orlandi, F., Montorsi, L., & Milani, M. (2023). Cavitation analysis through CFD in industrial pumps: A review. International Journal of Thermofluids, 20, 100506. (doi:10.1016/j.ijft.2023.100506)
  10. Fausing Olesen, J., & Shaker, H. R. (2020). Predictive maintenance for pump systems and thermal power plants: State-of-the-art review, trends and challenges. Sensors, 20(8), 2425. (doi:10.3390/s20082425)
  11. Mrzljak, V., Prpić-Oršić, J., Musulin, J., & Štifanić, D. (2020). Energy and exergy analysis of deaerator from combined-cycle power plant. Trans Motauto World, 5(2), 64-67.
  12. Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
  13. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  14. Poljak, I., Orović, J., & Mrzljak, V. (2018). Energy and exergy analysis of the condensate pump during internal leakage from the marine steam propulsion system. Pomorstvo, 32(2), 268-280. (doi:10.31217/p.31.2.12)
  15. Elčić, Z. (1995). Steam turbines. ABB, Karlovac, National and University Library Zagreb.
  16. Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
  17. Erdem, H. H., Akkaya, A. V., Cetin, B., Dagdas, A., Sevilgen, S. H., Sahin, B., ... & Atas, S. (2009). Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48(11), 2179-2186. (doi:10.1016/j.ijthermalsci.2009.03.007)
  18. Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
  19. Kanoğlu, M., Çengel, Y. A. & Dincer, I. (2012). Efficiency Evaluation of Energy Systems. Springer Briefs in Energy. (doi:10.1007/978-1-4614-2242-6)
  20. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
  21. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  22. Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8-9), 1377-1385. (doi:10.1016/j.applthermaleng.2006.10.029)
  23. Mrzljak, V., Kudláček, J., Baressi Šegota, S., & Medica-Viola, V. (2021). Energy and Exergy Analysis of Waste Heat Recovery Closed- Cycle Gas Turbine System while Operating with Different Medium. Pomorski zbornik, 60(1), 21-48. (doi:10.18048/2021.60.02)
  24. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285-293. (doi:10.1016/j.applthermaleng.2019.01.003)
  25. Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of marine steam turbine conventional exergy analysis by neural network application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)
  26. Ćehajić, N. (2023). Exergy Analysis of Thermal Power Plant for Three Different Loads. Tehnički glasnik, 17(2), 160-166. (doi:10.31803/tg-20211214151555)
  27. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  28. Mrzljak, V., Poljak, I., & Ţarković, B. (2018). Exergy analysis of steam pressure reduction valve in marine propulsion plant on conventional LNG carrier. NAŠE MORE: znanstveni časopis za more i pomorstvo, 65(1), 24-31. (doi:10.17818/NM/2018/1.4)
  29. Kotas, T. J. (2012). The exergy method of thermal plant analysis. Paragon Publishing.

Article full text

Download PDF