MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

Isentropic analysis of nuclear power plant steam turbine and turbine cylinders

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 Department of maritime sciences, University of Zadar, Croatia

Abstract

This paper presents isentropic analysis results of the whole steam turbine (as well as turbine cylinders) from nuclear power plant. In the analyzed steam turbine, LPC (Low Pressure Cylinder) is the dominant mechanical power producer – mechanical power produced in the LPC is more than two times higher in comparison to mechanical power produced in the HPC (High Pressure Cylinder). Whole analyzed steam turbine produces real mechanical power equal to 1372.47 MW, while the highest possible mechanical power which can be produced in the whole turbine when all the losses are neglected (ideal mechanical power) equals 1686.96 MW. LPC has a notably higher isentropic efficiency than HPC, regardless of higher isentropic loss (isentropic efficiencies of the LPC and HPC are 84.41% and 74.84%, respectively). HPC has notably higher specific steam consumption and specific heat consumption in comparison to LPC. Whole turbine has an isentropic efficiency equal to 81.36%, isentropic loss equal to 314.48 MW, specific steam consumption of 9.15 kg/kWh and specific heat consumption of 3799.06 kJ/kWh, what is in the range of similar comparable steam turbines from nuclear power plants.

Keywords

References

  1. Leyzerovich, A. S. (2021). Steam turbines for modern fossil-fuel power plants. River Publishers.
  2. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  3. Behrendt, C., & Stoyanov, R. (2018). Operational characteristic of selected marine turbounits powered by steam from auxiliary oil-fired boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  4. Mrzljak, V., Poljak, I., & Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 70(1), 59-77. (doi:10.21278/brod70105)
  5. Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
  6. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285- 293. (doi:10.1016/j.applthermaleng.2019.01.003)
  7. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  8. Adibhatla, S., & Kaushik, S. C. (2014). Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Applied thermal engineering, 73(1), 51-65. (doi:10.1016/j.applthermaleng.2014.07.030)
  9. Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8-9), 1377-1385. (doi:10.1016/j.applthermaleng.2006.10.029)
  10. Naserbegi, A., Aghaie, M., Minuchehr, A., & Alahyarizadeh, G. (2018). A novel exergy optimization of Bushehr nuclear power plant by gravitational search algorithm (GSA). Energy, 148, 373-385. (doi:10.1016/j.energy.2018.01.119)
  11. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  12. Uysal, C., Kurt, H., & Kwak, H. Y. (2017). Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120. (doi:10.1016/j.ijthermalsci.2017.03.010)
  13. Eshun, R. B. (2019). Energy and exergy based performance analysis of Westinghouse AP1000 nuclear power plant. Applied Sciences, 4(1), 1-10. (doi:10.11648/j.aas.20190401.11)
  14. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  15. Mrzljak, V., Prpić-Oršić, J., Anđelić, N., & Lorencin, I. (2022). Nuclear power plant steam re-heating system - exergy analysis at four different operating regimes. International scientific conference Technics. Technologies. Education. Safety 2022., 5-8.
  16. Medica-Viola, V., Pavković, B., & Mrzljak, V. (2018). Numerical model for on-condition monitoring of condenser in coal-fired power plants. International Journal of Heat and Mass Transfer, 117, 912-923. (doi:10.1016/j.ijheatmasstransfer.2017.10.047)
  17. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  18. Mrzljak, V., Kudláček, J., Baressi Šegota, S., & Medica-Viola, V. (2021). Energy and Exergy Analysis of Waste Heat Recovery Closed- Cycle Gas Turbine System while Operating with Different Medium. Pomorski zbornik, 60(1), 21-48.(doi:10.18048/2021.60.02)
  19. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  20. Anđelić, N., Mrzljak, V., Lorencin, I., & Baressi Šegota, S. (2020). Comparison of exergy and various energy analysis methods for a main marine steam turbine at different loads. Pomorski zbornik, 59(1), 9-34. (doi:10.18048/2020.59.01)
  21. Poljak, I., Orović, J., Mrzljak, V., & Bernečić, D. (2020). Energy and exergy evaluation of a two-stage axial vapour compressor on the LNG carrier. Entropy, 22(1), 115. (doi:10.3390/e22010115)
  22. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  23. Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
  24. Elčić, Z. (1995). Steam turbines. ABB, Karlovac, National and University Library Zagreb.
  25. Tanuma, T. (Ed.). (2022). Advances in steam turbines for modern power plants. Woodhead Publishing.
  26. Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
  27. Talebi, S., & Norouzi, N. (2020). Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm. Nuclear Engineering and Technology, 52(12), 2928-2938. (doi:10.1016/j.net.2020.05.011)
  28. Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of marine steam turbine conventional exergy analysis by neural network application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)
  29. Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)

Article full text

Download PDF