DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

Mechanical characterisation of Babbitt Alloys solidified under different conditions

  • 1 Institute of Mechanics at Bulgarian Academy of Sciences, Bulgaria; Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre "Acad. A. Balevski" at Bulgarian Academy of Sciences
  • 2 Institute of Mechanics at Bulgarian Academy of Sciences, Bulgaria

Abstract

This paper investigates the mechanical behaviour of SnSb11Cu6 Babbitt alloys solidified under pressure and under atmospheric conditions. Quasi-static tests were performed at three different constant strain rates: 0.001 s⁻ ¹, 0.003 s⁻ ¹, and 0.01 s⁻ ¹, while dynamic tests were conducted at strain rates corresponding to impact speeds of 10 m/s and 20 m/s. The results indicate that alloys solidified under atmospheric conditions exhibit higher compressive strength in the quasi-static regime than those solidified under pressure. However, as the impact speed increases to 1400 s-1 the compressive strength of both materials converges. Beyond this rate (up to 2800 s⁻ ¹), the alloy solidified under pressure shows a slight performance shift, suggesting better property stability at higher loading rates. Overall, the alloy solidified under atmospheric conditions offers superior performance for low-strain applications, whereas the alloy solidified under pressure demonstrates more stable properties under high-strain loadings. These findings offer valuable insights for the selection and design of materials in tribological systems, particularly where performance varies under different loading conditions.

Keywords

References

  1. Xiaoyan Ren et al 2023 J. Phys.: Conf. Ser. 2478 (2023) 052007
  2. Qin Dong, Hongchao Wei, Hulin Li, Changxin Liu. Materials Today: Communications, Volume 38, March 2024, 107943
  3. Cheng, Z.;Wang, M.;Wang, B.; Zhang, L.; Zhu, T.; Li, N.; Zhou, J.; Jia, F. Materials 2024, 17, 5494.
  4. Zhao J, Sun K, Liang G, Xu C, Zhao J, Xue F, Zhou J. J Mat. Res. And Tech. 2021, Vol 15, Pages 6726-6735
  5. Qin Dong, Zhongwei Yin, Hulin Li, Xiaoyun Zhang, Dan Jiang, Ning Zhong. Mat. Sci. & Eng. A 722 (2018) 225–230
  6. Ramadan, M.; Subhani, T.; Hafez, K.M.; Fathy, N.; Ayadi, B.; Abdel Halim, K.S.; Alghamdi, A.S.; Ibrahim, K.M. Metals 2023, 13, 324.
  7. M. Moazami Goudarzi, S.A. Jenabali Jahromi, A. Nazarboland. Materials and Design 30 (2009) 2283–2288
  8. Paulo Roberto Campos Alcover Junior, Anderson Geraldo Marenda Pukasiewicz. Trib. Int. 131 (2019) 148–157
  9. Leszczyńska-Madej B, Madej M (2013). Kovove Mater 51:1–10.
  10. Potekhin BA, Ilyushin VV, Khristolyubo AS. Metal Sci Heat Treat. 2009. Vol. 51, Nos. 7 – 8.
  11. A. Brudny, M. Maleta, B. Cwolek, J. Kulasa, W. Malec The 75th World Foundry Congress, 2024, Deyang, Sichuan, China
  12. I. Sh. Valeev, A. Kh. Valeeva, A. Kh. Akhunova Letters on materials 7 (3), 2017 pp. 292-295
  13. M.V.S Babu, A. Rama Krishna, and K.N.S. Suman / Am. J. Mat. Sci. Tech. (2015) Vol. 4 No. 2 pp. 76-83
  14. Stanev, L.; Kolev, M.; Drenchev, L. J. Tribol. 2021, 143, 064502, doi:10.1115/1.4050271
  15. Stanev, L.; Kolev, M.; Drenchev, L.; Krastev, B. J. Mater. Eng. Perform. 2020, 29, 3767–3773.
  16. Barykin NP, Fazlyakhmetov RF, Valeeva AK. Met Sci Heat Treat. 2006, Vol. 48, Nos. 1 – 2.
  17. Leszczyńska-Madej, B., Hrabia-Wiśnios, J., Węglowska, A. Et al. Archiv.Civ.Mech.Eng 22, 202 (2022)
  18. Hrabia-Wiśnios, J., Leszczyńska-Madej, B., Madej, M. et al. Int J Adv Manuf Technol 117, 469–479 (2021).
  19. Leszczyńska-Madej, B.; Madej, M.; Hrabia-Wiśnios, J.; Węglowska, A. Materials 2020, 13, 5826
  20. Hrabia-Wiśnios, J., Leszczyńska-Madej, B., Madej, M. et al. Int J Adv Manuf Technol 117, 469–479 (2021).

Article full text

Download PDF