• Numerical analysis of turbo-generator steam turbine energy efficiency and energy power losses change during the variation in developed power

    Machines. Technologies. Materials., Vol. 13 (2019), Issue 1, pg(s) 11-14

    Developed power variation of turbo-generator (TG) steam turbine allows insight into the change of turbine energy efficiency and energy power losses. Measurements were performed in five different TG steam turbine operating points and analysis is presented in three randomly selected operating points. Turbine developed power was varied from 500 kW until the maximum power of 3850 kW in steps of 100 kW. Turbine energy efficiency increases from 500 kW to 2700 kW and maximum energy efficiency was obtained at 70.13 % of maximum turbine power (at 2700 kW) in each operating point. From 2700 kW until the maximum of 3850 kW, TG turbine energy efficiency decreases. Change in TG turbine energy efficiency is caused by an uneven intensity of increase in turbine power and steam mass flow. For all observed operating points, energy efficiency during turbine exploitation is approximately 10 % or more lower than the maximum obtained one. A continuous increase in turbine energy power losses during the developed turbine power increase are the most influenced by the continuous increase in steam mass flow through the turbine.

  • INNOVATIVE SOLUTIONS

    EXERGY EFFICIENCY AND EXERGY DESTRUCTION CHANGE OF LOW POWER STEAM TURBINE WITH ONE CURTIS STAGE DURING THE VARIATION IN DEVELOPED POWER

    Innovations, Vol. 6 (2018), Issue 1, pg(s) 34-37

    In this paper is presented an exergy analysis of low power steam turbine with one Curtis stage which drives the main feed water pump (MFPT) in the conventional LNG carrier steam propulsion system. It was obtained an insight into the exergy efficiency and the exergy destruction change during the variation in turbine developed power. Measurements of necessary steam operating parameters were performed in seven different turbine operating points. Increase in turbine developed power from 50 kW up to maximum power of 570 kW causes a continuous increase in turbine exergy efficiency and highest exergy efficiency was obtained at the maximum turbine power. Turbine exergy destruction is influenced by steam operating parameters, steam mass flow and turbine current power. MFPT is balanced as the most of the other steam system components – maximum exergy efficiency will be obtained at the highest turbine (steam propulsion system) load on which can be expected the majority of LNG carrier operation.