• INNOVATIVE SOLUTIONS

    Vanadium Unveiled: Exploring Jordanian Rock Phosphate and the Crucial Role of Vanadium Technologies in Shaping a Sustainable Energy Future

    Innovations, Vol. 12 (2024), Issue 1, pg(s) 33-35

    Vanadium, a vital element for the advancement of clean energy technologies, holds the potential to revolutionize the energy landscape. This study investigates the distribution of vanadium within Jordan huge rock phosphate deposits, exploring its implications for sustainable energy transitions. Utilizing advanced analytical techniques, including X-ray fluorescence spectroscopy and scanning electron microscopy, were scrutinized the intricate geochemical characteristics of these deposits. The concentrations of Vanadium in different samples of Jordanian rock phosphate, encompassing Al-bied, Al-Hasa, and Eshidiya (A1, A2, A3, S1, and S2), as well as phosphoric acid, were analyzed. The Vanadium concentrations observed were 181 mgkg−1, 204 mgkg−1, 107 mgkg−1, 117 mgkg−1, 55 mgkg−1, 237 mgkg−1, and 291 mgkg−1, and 135 mgkg−1, respectively. The findings unveil promising concentrations of vanadium within Jordanian rock phosphate, positioning the country as a potential key player in the global supply chain of this critical metal. By elucidating the abundance and distribution of vanadium in Jordan rock phosphate, this research not only contributes to the understanding of vanadium fate and distribution but also underscores the imperative of sustainable resource utilization in advancing towards a cleaner and more resilient energy future.

  • MATERIALS

    The Effect of Vanadium, Niobium and Boron on Microstructure, Mechanical and Corrosion Properties of High-Chromium White Cast Irons

    Machines. Technologies. Materials., Vol. 16 (2022), Issue 8, pg(s) 286-289

    The influence of the vanadium, niobium and boron addition on properties of high-chromium white cast iron alloys for grinding balls is investigated in this paper. These alloying elements were individually added to the high-chromium white cast iron alloys with monitoring of changes in microstructure, corrosion rate, and mechanical properties in the as-cast conditions. The microstructure in all tested alloys consists of primary austenite dendrites and eutectic colonies, which consist of M7C3 carbides and austenite. The addition of V, Nb or B affects, to a greater or lesser extent, the size, morphology and volume fraction of both primary austenite dendrites and eutectic colonies. Samples of iron alloyed with vanadium and boron have a much finer structure than unmodified (base) alloy and niobium alloyed iron sample. Vanadium affects the decrease in the volume fraction of the primary austenitic phase, and the increase in the volume fraction of eutectic colonies, and thus the eutectic carbide phase in hypoeutectic alloys of high-chromium iron. The tested alloys have a comparable values of average hardness in the cross section of cast balls, as well as compressive yield strength, noting that the addition of vanadium increases the hardness, while boron addition increases the compressive yield stress. The single addition of all of three tested alloying elements shifts the corrosion potentials (and Tafel curves) of modified high-chromium white irons toward less negative values. The most favorable values of mechanical and corrosion properties were measured for the iron modified with 0.021 % of boron.

  • STUDY THE INFLUENCE OF ALLOYING ELEMENTS ON THE STRUCTURE OF IRON-BASED ALLOYS WITH HIGH CONTENT OF CARBON, MANGANESE AND CHROMIUM IN MODES OF HEAT TREATMENT

    Materials Science. Non-Equilibrium Phase Transformations., Vol. 2 (2016), Issue 2, pg(s) 13-15

    Demand for alloys with high mechanical performance and optimum qualities in the service conditions require new studies regarding thermal stability, wear resistance and corrosion resistance to them. Of interest are materials in which the deficient and expensive Ni is partially or completely substituted with Mn, such as the alloys of the systems Fe-Cr-Mn-C or Fe-Cr-Mn-Ni. To build an accurate picture of the structural features, properties and their behavior in the operating conditions need to be carried out relevant studies. The objectives of the study are related to clarify the processes of structure formation in heating and cooling of this type of austenitic alloys. Object models are cast with an increased concentration of carbon and constant chromium and manganese in the starting composition, as well as those supplemented with vanadium and nickel.