DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”
Efficiency and loss analysis of main steam condenser from nuclear power plant at various loads and ambient temperatures
- 1 Faculty of Engineering, University of Rijeka, Croatia
- 2 Department of maritime sciences, University of Zadar, Croatia
Abstract
This paper presents exergy analysis of the main steam condenser, which operates in nuclear power plant. The analysis is performed in four main condenser operating regimes (loads) for a variety of the ambient temperatures. It is found that the main steam condenser has the lowest exergy destruction (equal to 72091.56 kW) and the highest exergy efficiency (equal to 66.66%) at the lowest observed ambient temperature (5 °C) and for the highest of four observed loads. Also, it is noted that an increase in the ambient temperature from 20 °C to 25 °C (two the highest observed ambient temperatures) significantly decreases main steam condenser exergy efficiency for about 21%, regardless of the observed load.
Keywords
References
- Mitrović, D., Zivkovic, D., & Laković, M. S. (2010). Energy and exergy analysis of a 348.5 MW steam power plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(11), 1016- 1027. (doi:10.1080/15567030903097012)
- Škopac, L., Medica-Viola, V., & Mrzljak, V. (2020). Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 1-15. (doi:10.1080/01457632.2020.1744248)
- Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
- Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
- Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Görner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/j.energy.2016.06.071)
- Medica-Viola, V., Pavković, B., & Mrzljak, V. (2018). Numerical model for on-condition monitoring of condenser in coal-fired power plants. International Journal of Heat and Mass Transfer, 117, 912-923. (doi:10.1016/j.ijheatmasstransfer.2017.10.047)
- Laskowski, R. (2016). Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions. Applied Thermal Engineering, 103, 528-536. (doi:10.1016/j.applthermaleng.2016.04.127)
- Kostyuk, A., & Frolov, V. (Eds.). (1988). Steam and gas turbines. Mir Pub..
- Adibhatla, S., & Kaushik, S. C. (2014). Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Applied thermal engineering, 73(1), 51-65. (doi:10.1016/j.applthermaleng.2014.07.030)
- Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
- Mrzljak, V. (2018). Low power steam turbine energy efficiency and losses during the developed power variation. Tehnički glasnik, 12(3), 174-180. (doi:10.31803/tg-20180201002943)
- Mrzljak, V., Poljak, I., & Medica-Viola, V. (2016). Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period. Pomorstvo, 30(2), 133-140. (doi:10.31217/p.30.2.6)
- Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Energy and exergy efficiency analysis of sealing steam condenser in propulsion system of LNG carrier. NAŠE MORE: znanstveni časopis za more i pomorstvo, 64(1), 20-25. (doi:10.17818/NM/2017/1.4)
- Kocijel, L., Poljak, I., Mrzljak, V., & Car, Z. (2020). Energy loss analysis at the gland seals of a marine turbo-generator steam turbine. Tehnički glasnik, 14(1), 19-26. (doi:10.31803/tg-20191031094436)
- Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
- Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Exergy analysis of marine steam turbine labyrinth (gland) seals. Pomorstvo, 33(1), 76-83. (doi:10.31217/p.33.1.8)
- Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
- Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of Marine Steam Turbine Conventional Exergy Analysis by Neural Network Application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)
- Mrzljak, V., Blecich, P., Anđelić, N., & Lorencin, I. (2019). Energy and exergy analyses of forced draft fan for marine steam propulsion system during load change. Journal of Marine Science and Engineering, 7(11), 381. (doi:10.3390/jmse7110381)
- Tan, H., Shan, S., Nie, Y., & Zhao, Q. (2018). A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle. Cryogenics, 92, 84-92. (doi:10.1016/j.cryogenics.2018.04.009)
- Elhelw, M., & Al Dahma, K. S. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285-293. (doi:10.1016/j.applthermaleng.2019.01.003)
- Baldi, F., Ahlgren, F., Nguyen, T. V., Thern, M., & Andersson, K. (2018). Energy and exergy analysis of a cruise ship. Energies, 11(10), 2508. (doi:10.3390/en11102508)
- Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392-403. (doi:10.1016/j.energy.2018.08.119)
- Wang, C., Yan, C., Wang, J., Tian, C., & Yu, S. (2017). Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm. Applied Thermal Engineering, 125, 830-845. (doi:10.1016/j.applthermaleng.2017.07.045)
- Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
- Anđelić, N., Baressi Šegota, S., Lorencin, I., Jurilj, Z., Šušteršič, T., Blagojević, A., ... & Car, Z. (2021). Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm. International Journal of Environmental Research and Public Health, 18(3), 959. (doi:10.3390/ijerph18030959)
- Car, Z., Baressi Šegota, S., Anđelić, N., Lorencin, I., & Mrzljak, V. (2020). Modeling the spread of COVID-19 infection using a multilayer perceptron. Computational and mathematical methods in medicine, 2020. (doi:10.1155/2020/5714714)
- Lorencin, I., Baressi Šegota, S., Anđelić, N., Blagojević, A., Šušteršić, T., Protić, A., ... & Car, Z. (2021). Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks. Journal of Personalized Medicine, 11(1), 28. (doi:10.3390/jpm11010028)