Features of modeling of ultralow power electric fields

  • 1 Cherkasy State Technological University, Cherkasy, Ukraine


The article presents the results of modeling quasi-stationary ultralow power electric fields (the order of tens of nanowatts) and establishes ranges of rational values of parameters (average density of electric voltage, specific potential) of these fields. As a result of mathematical modeling (based on a system of Gaussian equations) and subsequent numerical experiment, it is shown that an instantaneous increase in the average electric density of a quasi-static electric field in 2 times in one part of the field leads to an increase in charge redistribution time from 34 ns (at an initial density of electric tension of 17 nN/Ku.μm 3) to 189 ns (at a density of electric tension of 145 nN/Ku.μm3). This redistribution allows us to determine the range of rational values of the specific potential, which is 1.1… 9 nV/μm 2. In this case, the maximum specific power that can occur in such a field is 0.5… 0.77 nW/μm 2.



  1. W.Liqiu, D.Yongjie, Yu.Daren, Application of an Electric Field to Low-Frequency Oscillation Control in Hall Thrusters, Electric Field, (Mohsen Sheikholeslami Kandelousi, IntechOpen, 2017). DOI: 10.5772/intechopen.71009.
  2. X.H.Francis, R.J.Palisano, The Application of Electric Fields in Biology and Medicine, Electric Field, (Mohsen Sheikholeslami Kandelousi, IntechOpen, 2017). DOI: 10.5772/intechopen.71683.
  3. P.E.Secker, J.N.Chubb, J. Electrostatics, 16, 1-19 (1984).
  4. Britannica, The Editors of Encyclopaedia. "Electric field". Encyclopedia Britannica [Online]. Available: https://www. Accessed on April 27, 2021.
  5. S.Shaik, T.A1-Stuyver, Effects of Electric Fields on Structure and Reactivity: Theoretical and Computational Chemistry Series, (The Royal Society of Chemistry, 2021), DOI: 10.1039/9781839163043.
  6. J.Roche, Physics Education, 51(5), 055005 (2016). DOI:10.1088/ 0031-9120/51/5/055005
  7. R.A.Serway, Chr.Vuille, College Physics, (10th Ed. Cengage Learning, 2014), pp. 532-533.
  8. T.Nasser, Introduction to power system faults, Power Systems Modelling and Fault Analysis (Academic Press, 2019), pp. 1-39. DOI: 10.1016/B978-0-12-815117-4.00001-1
  9. J.O.Kang, H.Lee, H.Kang, J. Supercond. Nov. Magn., 28, 1167 (2015).
  10. W.X.Sima, H.Song, Q.Yang, et al., AIP Adv., 5, 127136 (2015).
  11. E.Sili, J.-P.Cambronne, F.Koliatene, Temperature Dependence of Electrical Breakdown Mechanism on the Left of the Paschen Minimum, IEEE Trans. Plasma Sci., 39. 3173-3179 (2011). DOI: 10.1109/TPS.2011.2165969.
  12. E.Kuffel, W.S.Zeangle, J.Kuffel, High Voltage Engineering Fundamentals, (Butterworth-Heinemann 2-nd edition, 2000).
  13. C.L.Wadhwa, High Voltage Engineering, (New Age International (P) Limited,2-nd edition, 2007).
  14. J.B.Nahkang, Y.D.Chung, M.C.Ahn, et al., IEEE Transactions on Applied Superconductivity, 3(20), June 2010.
  15. L.Sukumaran, Control Engineering Practice, 92, 0967-0661 (2019). DOI: 10.1016/j.conengprac.2019.104138.
  16. H.Pacejka, Igo.Besselink, Vehicle System Dynamics, 27, 234- 249 (1996). DOI: 10.1080/00423119608969658.
  17. A.Waser, Force of a Hertz-Dipole on a Stationary Charge, (2000).
  18. T.K.Sarkar, S.Burintramart, N.Yilmazer, et al., IEEE Antennas and Propagation Magazine, 3(50), pp. 21-50 (June 2008).
  19. N.Hadziefendic, J.Trifunovic, N.Kostic, et. al., Innovations, 1(8), pp. 41-45 (2020).
  20. S.Todorova, M.Proykov, Industry 4.0, 1(6), pp. 25-26 (2021)

Article full text

Download PDF