Improving the resolution and accuracy of temperature distribution on the surface of microsystems using thermographic methods

  • 1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
  • 2 Cherkasy State Technological University, Cherkasy, Ukraine


Improvement of thermographic imaging device by using an automatic scanning system as opaque for infrared radiation of a matrix aperture with a window of transparency at the lens of the thermal imaging lens, leads to improvement of the spatial and temporal characteristics of the thermal imager, namely, its separation from the point of view. As a result of the experiments, it was found that the spatial resolution of the improved thermographic method (compared to the standard method of determination) was improved by 15 – 20%, and the spectral resolution by 0.3 – 0.5 μm. According to the results of the analysis of the processed image, the adjusted temperature scale of the thermogram, which, in turn, allowed to increase the accuracy of temperature determination in each accurate image (the temperature distribution error did not exceed 5.5%).



  1. M. Velivehi, X. Perpina, G.L. Lauro, Rev. Sci. Instrum., 82, 114901 (2011).
  2. S. Ralchenko, V. Andriienko, M. Bondarenko, /view/5951/4479
  3. O. Andriienko, S. Ralchenko, M. Bondarenko, Yu. Bondarenko, Mach. Technol. Mater., 13, 11 (2019), <https://stumejournals. com/journals/mtm/2019/11/495.full.pdf>
  4. M. Bondarenko, Yu. Bondarenko, S. Shelestovskaya and V. Andriienko, in: XII International Scientiific Conference “Methodological aspects of scanning probe microscopy” (Navuka, Minsk, 2016), pp. 235-241.
  5. V.A. Vavilov, La Recherche Aerospatiale, 6 (1991) (in English & French).
  6. S. Marinetti, V. Vavilov, Int. J. of Heat Transfer Engineering, 26, 9 (2005).
  7. D. Maillet, S. Andre, J.-C. Batsale, Thermal quadrupoles: Solving the heat equation through integral transforms (John Wiley & Sons Publ., England, 2000).
  8. Guo Xingwang, V.P. Vavilov, Polymer Testing, 45, 3 (2015).
  9. R. Mulaveesala, S. Tuli, Appl. Phys. Lett., 19, 191913 (2006).
  10. S. Matvienko, S. Vysloukh, O. Martynchyk, East.Europ. J. of Enterpr. Technol., 4, 5(82) (2016), doi: 10.15587/1729- 4061.2016.75459.
  11. S. Ralchenko, V. Antonyuk, V. Andriienko, V. Tkachenko, M. Bondarenko, Ukr. Patent No. 119337 (25 September, 2017) (in Ukrainian).
  12. Yu. Bondarenko, M. Bondarenko, S. Ralchenko, in: Global Partnership in the Sustainable Development Paradigm: Education, Technology, Innovation, edited by O.Yu. Berezina (Chabanenko Yu., Cherkasy, 2017). pp. 464-475 (in Ukrainian).
  13. V. Khristenko, L. Omelko, O. Donii, Mach. Technol. Mater., 12, 9 (2018), < 374.full.pdf>
  14. E.A. Chinnov, S.S. Abdurakipov, Int. J. Heat and Mass Transfer, 56, 775 (2013), doi: 10.1016/j.ijheatmasstransfer. 2012.08.058.
  15. J. Jung, J. Kim, S.J. Kim, J. Heat Transfer, 136, 041501 (2014), doi: 10.1115/1.4025697.
  16. I. Yatsenko, V. Antonyuk, O. Kyrychenko, V. Vashchenko, Mach. Technol. Mater., 11, 1 (2017), <https://stumejournals. com/journals/mtm/2017/1/20.full.pdf>

Article full text

Download PDF