The ambient temperature influence on deaerator exergy efficiency and exergy losses

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 University of Zadar, Maritime Department, M., Croatia

Abstract

The exergy analysis of deaerator at three different steam power plant loads is performed in this paper. Also, the influence of the ambient temperature change on deaerator exergy efficiency and losses is analyzed. From the exergy viewpoint, deaerator operation shows the best characteristics at middle and high power plant loads. The lowest deaerator exergy destruction of 363.94 kW and the highest exergy efficiency of 93.27 % will be obtained at middle power plant load and at the ambient temperature of 5 °C. The highest deaerator exergy destruction of 1349.99 kW and the lowest exergy efficiency of 81.83 % will be obtained at low power plant load and at the ambient temperature of 45 °C. Deaerator operation is preferable at the lowest possible ambient temperature, regardless of the current power plant load.

Keywords

References

  1. Adibhatla, S., Kaushik, S. C.: Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation, Applied Thermal Engineering 73, p. 49-63, 2014. (doi:10.1016/j.applthermaleng.2014.07.030)
  2. Uysal, C., Kurt, H., Kwak, H. Y.: Exergetic and thermoeconomic analyses of a coal-fired power plant, International Journal of Thermal Sciences 117, p. 106-120, 2017. (doi:10.1016/j.ijthermalsci.2017.03.010)
  3. Koroglu, T., Sogut, O. S.: Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant, Energy 163, p. 392- 403, 2018. (doi:10.1016/j.energy.2018.08.119)
  4. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)
  5. Ahmadi, G. R., Toghraie, D.: Energy and exergy analysis of Montazeri Steam Power Plant in Iran, Renewable and Sustainable Energy Reviews 56, p. 454–463, 2016. (doi:10.1016/j.rser.2015.11.074)
  6. Medica-Viola, V., Pavković, B., Mrzljak, V.: Numerical model for on-condition monitoring of condenser in coal-fired power plants, International Journal of Heat and Mass Transfer 117, p. 912–923, 2018. (doi:10.1016/j.ijheatmasstransfer.2017.10.047)
  7. Mrzljak, V., Prpić-Oršić, J., Senčić, T.: Change in Steam Generators Main and Auxiliary Energy Flow Streams During the Load Increase of LNG Carrier Steam Propulsion System, Scientific Journal of Maritime Research 32 (1), p. 121-131, 2018. (doi:10.31217/p.32.1.15)
  8. Poljak, I., Orović, J., Mrzljak, V.: Energy and Exergy Analysis of the Condensate Pump During Internal Leakage from the Marine Steam Propulsion System, Scientific Journal of Maritime Research 32 (2), p. 268-280, 2018. (doi:10.31217/p.32.2.12)
  9. Mrzljak, V., Poljak, I., Žarković, B.: Exergy Analysis of Steam Pressure Reduction Valve in Marine Propulsion Plant on Conventional LNG Carrier, International Journal of Maritime Science & Technology "Our Sea" 65(1), p. 24-31, 2018. (doi:10.17818/NM/2018/1.4)
  10. Mrzljak, V.: Low power steam turbine energy efficiency and losses during the developed power variation, Technical Journal 12 (3), p. 174-180, 2018. (doi:10.31803/tg-20180201002943)
  11. Mrzljak, V., Senčić, T., Žarković, B.: Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change, Modelling and Simulation in Engineering 2018. (doi:10.1155/2018/2945325)
  12. Mrzljak, V., Poljak, I., Medica-Viola, V.: Energy and Exergy Efficiency Analysis of Sealing Steam Condenser in Propulsion System of LNG Carrier, International Journal of Maritime Science & Technology "Our Sea" 64 (1), p. 20-25, 2017. (doi:10.17818/NM/2017/1.4)
  13. Mrzljak, V., Poljak, I., Medica-Viola, V.: Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier, Applied Thermal Engineering 119, p. 331–346, 2017. (doi:10.1016/j.applthermaleng.2017.03.078)
  14. Tan, H., Shan, S., Nie, Y., Zhao, Q.: A new boil-off gas re liquefaction system for LNG carriers based on dual mixed refrigerant cycle, Cryogenics 92, p. 84–92, 2018. (doi:10.1016/j.cryogenics.2018.04.009)
  15. Orović, J., Mrzljak, V., Poljak, I.: Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant, Energies 2018, 11 (11), 3019 (doi:10.3390/en11113019)
  16. Mrzljak, V., Poljak, I., Medica-Viola, V.: Thermodynamical analysis of high-pressure feed water heater in steam propulsion system during exploitation, Shipbuilding 68 (2), p. 45-61, 2017. (doi:10.21278/brod68204)
  17. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., Bazzo, E.: Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant, Energy 117, Part 2, p. 416-428, 2016. (doi:10.1016/j.energy.2016.06.071)
  18. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport properties REFPROP, version 9.0, User’s guide, Colorado, 2010.
  19. Mrzljak, V., Poljak, I., Prpić-Oršić, J.: Exergy analysis of the main propulsion steam turbine from marine propulsion plant, Shipbuilding Vol. 70., No. 1, p. 59-77, 2019. (doi:10.21278/brod70105)

Article full text

Download PDF