Gas turbine upgrade with heat regenerator – numerical analysis of advantages and disadvantages

  • 1 Faculty of Engineering, University of Rijeka, Croatia

Abstract

The paper presents analysis of industrial gas turbine and its upgrade with heat regenerator. Based on a gas turbine operational data from a thermal power plant (base process) it was investigated advantages and disadvantages of heat regenerator implementation in the gas turbine process. Regenerator efficiencies were varied between 75% and 95%. Heat regenerator causes decrease of gas turbine fuel consumption up to 0.621 kg/s with a simultaneous increase in gas turbine process efficiency up to 10.52%. The main disadvantages of heat regenerator implementation are decrease in turbine cumulative and useful power along with decrease in the cumulative amount of heat released from the process.

Keywords

References

  1. Ibrahim, T. K., Basrawi, F., Awad, O. I., Abdullah, A. N., Najafi, G., Mamat, R., Hagos, F. Y.: Thermal performance of gas turbine power plant based on exergy analysis, Applied Thermal Engineering 115, p. 977-985, 2017. (doi:10.1016/j.applthermaleng.2017.01.032)
  2. Chaibakhsh, A., Amirkhani, S.: A Simulation Model for transient behaviour of Heavy-duty Gas Turbines, Applied Thermal Engineering 132, p. 115-127, 2018. (doi:10.1016/j.applthermaleng.2017.12.077)
  3. Kotowicz, J., Brzęczek, M.: Analysis of Increasing Efficiency of Modern Combined Cycle Power Plant: A Case Studies, Energy 153, p. 90-99, 2018. (doi:10.1016/j.energy.2018.04.030)
  4. Yoru, Y., Karakoc, T. H., Hepbasli, A.: Dynamic energy and exergy analyses of an industrial cogeneration system, International journal of energy research 34, p. 345–356, 2010. (doi:10.1002/er.1561)
  5. Ameri, M., Mohammadzadeh, M.: Thermodynamic, thermoeconomic and life cycle assessment of a novel integrated solar combined cycle (ISCC) power plant, Sustainable Energy Technologies and Assessments 27, p. 192–205, 2018. (doi:10.1016/j.seta.2018.04.011)
  6. Dabwan, Y. N., Mokheimer, E. M. A.: Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant, Energy Conversion and Management 148, p. 830–843, 2017. (doi:10.1016/j.enconman.2017.06.057)
  7. Kang, Q., Dewil, R., Degrève, J., Baeyens, J., Zhang, H.: Energy analysis of a particle suspension solar combined cycle power plant, Energy Conversion and Management 163, p. 292 303, 2018. (doi:10.1016/j.enconman.2018.02.067)
  8. Adibhatla, S., Kaushik, S. C.: Energy, exergy and economic (3E) analysis of integrated solar direct steam generation combined cycle power plant, Sustainable Energy Technologies and Assessments 20, p. 88–97, 2017. (doi:10.1016/j.seta.2017.01.002)
  9. Cengel Y., Boles M.: Thermodynamics an engineering approach, Eighth edition, McGraw-Hill Education, 2015.
  10. Moran M., Shapiro H., Boettner, D. D., Bailey, M. B.: Fundamentals of engineering thermodynamics, Seventh edition, John Wiley and Sons, Inc., 2011.
  11. Balli, O., Aras, H., Hepbasli, A.: Exergetic performance evaluation of a combined heat and power (CHP) system in Turkey, International journal of energy research 31, p. 849–866, 2007. (doi:10.1002/er.1270)
  12. Beck, D. S., Wilson, D. G.: Gas-Turbine Regenerators, First edition, Chapman & Hall, International Thomson Publishing, 1996.

Article full text

Download PDF