VEHICLE ENGINES. APPLICATION OF FUELS TYPES. EFFICIENCY

Energy analysis of two-cylinder steam turbine from nuclear power plant

  • 1 Faculty of Engineering, University of Rijeka, Croatia

Abstract

In this paper, two-cylinder steam turbine, which operates in nuclear power plant is analyzed from the energy viewpoint. Along with the whole turbine, energy analysis is performed for each turbine cylinder (High Pressure Cylinder – HPC and Low Pressure Cylinder – LPC). A comparison of both cylinders shows that the dominant mechanical power producer is LPC, which also has much higher energy loss and much lower energy efficiency. Therefore, any potential improvement of this steam turbine should be based dominantly on th e LPC, which also has a dominant influence on energy analysis parameters of the whole observed turbine. The whole turbine produces real (polytropic) mechanical power equal to 1247.69 MW, has energy loss equal to 352.70 MW and energy efficiency equal to 77.96%. According to obtained energy efficiency value it can be concluded that the whole analyzed steam turbine is comparable to main marine propulsion steam turbines, while its energy efficiency is much lower in comparison to steam turbines from conventional steam power plant s which operates by using superheated steam.

Keywords

References

  1. Erdem, H. H., Akkaya, A. V., Cetin, B., Dagdas, A., Sevilgen, S. H., Sahin, B., ... & Atas, S. (2009). Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48(11), 2179-2186. (doi:10.1016/j.ijthermalsci.2009.03.007)
  2. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285- 293. (doi:10.1016/j.applthermaleng.2019.01.003)
  3. Ersayin, E., & Ozgener, L. (2015). Performance analysis of combined cycle power plants: A case study. Renewable and Sust. Energy Reviews, 43, 832-842. (doi:10.1016/j.rser.2014.11.082)
  4. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  5. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
  6. Mrzljak, V., Poljak, I., & Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 70(1), 59-77. (doi:10.21278/brod70105)
  7. Behrendt, C., & Stoyanov, R. (2018). Operational Characteristic of Selected Marine Turbounits Powered by Steam from Auxiliary Oil- Fired Boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  8. Medica-Viola, V., Mrzljak, V., Anđelić, N., & Jelić, M. (2020). Analysis of Low-Power Steam Turbine With One Extraction for Marine Applications. NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(2), 87-95. (doi:10.17818/NM/2020/2.1)
  9. Kamate, S. C., & Gangavati, P. B. (2010). Energy and exergy analysis of a 44-MW bagasse-based cogeneration plant in India. Cogeneration and distributed generation journal, 25(1), 35-51. (doi:10.1080/15453661009709861)
  10. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/j.energy.2016.06.071)
  11. Naserbegi, A., Aghaie, M., Minuchehr, A., & Alahyarizadeh, G. (2018). A novel exergy optimization of Bushehr nuclear power plant by gravitational search algorithm (GSA). Energy, 148, 373-385. (doi:10.1016/j.energy.2018.01.119)
  12. Al-Zareer, M., Dincer, I., & Rosen, M. A. (2017). Development and assessment of a novel integrated nuclear plant for electricity and hydrogen production. Energy Conversion and Management, 134, 221- 234. (doi:10.1016/j.enconman.2016.12.004)
  13. Ray, T. K., Datta, A., Gupta, A., & Ganguly, R. (2010). Exergy-based performance analysis for proper O&M decisions in a steam power plant. Energy Conversion and Management, 51(6), 1333-1344. (doi:10.1016/j.enconman.2010.01.012)
  14. Wang, C., Yan, C., Wang, J., Tian, C., & Yu, S. (2017). Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm. Applied Thermal Eng., 125, 830- 845. (doi:10.1016/j.applthermaleng.2017.07.045)
  15. Škopac, L., Medica-Viola, V., & Mrzljak, V. (2020). Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 1-15. (doi:10.1080/01457632.2020.1744248)
  16. Cangioli, F., Chatterton, S., Pennacchi, P., Nettis, L., & Ciuchicchi, L. (2018). Thermo-elasto bulk-flow model for labyrinth seals in steam turbines. Tribology international, 119, 359-371. (doi:10.1016/j.triboint.2017.11.016)
  17. Mrzljak, V., Kudláček, J., Begić-Hajdarević, Đ., & Musulin, J. (2020). The Leakage of Steam Mass Flow Rate through the Gland Seals–Influence on Turbine Produced Power. Pomorski zbornik, 58(1), 39-56. (doi:10.18048/2020.58.03.)
  18. Marques, J. G., Costa, A. L., Pereira, C., & Fortini, Â. (2019). Energy and Exergy Analyses of Angra 2 Nuclear Power Plant. Brazilian Journal of Radiation Sciences, 7(2B). (doi:10.15392/bjrs.v7i2B.647)
  19. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  20. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  21. Kanoğlu, M., Çengel, Y. A., & Dinçer, İ. (2012). Efficiency evaluation of energy systems. Springer Science & Business Media.
  22. Mrzljak, V. (2018). Low power steam turbine energy efficiency and losses during the developed power variation. Tehnički glasnik, 12(3), 174-180. (doi:10.31803/tg-20180201002943)
  23. Mrzljak, V., Blecich, P., Anđelić, N., & Lorencin, I. (2019). Energy and Exergy Analyses of Forced Draft Fan for Marine Steam Propulsion System during Load Change. Journal of Marine Science and Engineering, 7(11), 381. (doi:10.3390/jmse7110381)
  24. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  25. Mrzljak, V., Anđelić, N., Poljak, I., & Orović, J. (2019). Thermodynamic analysis of marine steam power plant pressure reduction valves. Pomorski zbornik, 56(1), 9-30. (doi:10.18048/2019.56.01)
  26. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392-403. (doi:10.1016/j.energy.2018.08.119)
  27. Mrzljak, V., Medica, V., & Mrakovčić, T. (2015). Simulation of diesel engine cylinder process using quasi-dimensional numerical model. Pomorstvo, 29(2), 165-169.
  28. Mrzljak, V., & Poljak, I. (2019). Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads. NAŠE MORE: znanstveno-stručni časopis za more i pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
  29. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sust. Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  30. Tanuma, T. (Ed.). (2017). Advances in Steam Turbines for Modern Power Plants. Woodhead Publishing.
  31. Anđelić, N., Baressi Šegota, S., Lorencin, I., Poljak, I., Mrzljak, V., & Car, Z. (2021). Use of Genetic Programming for the Estimation of CODLAG Propulsion System Parameters. Journal of Marine Science and Engineering, 9(6), 612. (doi:10.3390/jmse9060612)
  32. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  33. Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of Marine Steam Turbine Conventional Exergy Analysis by Neural Network Application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)

Article full text

Download PDF