The geometrical criterions of nanoparticles

  • 1 Grodno, Belarus, Faculty of physics and technology – Yanka Kupala State University of Grodno, Belarus,
  • 2 Molder, ltd – Grodno, Belarus,
  • 3 Faculty of Innovative Technologies of Mechanical Engineering – Yanka Kupala State University of Grodno, Belarus,
  • 4 University of Ruse – Bulgaria

Abstract

The structure of the bulk crystals allow to determine the habit of the nanocrystales on their base only as a source point. It is impossible to neglect the size, form and influence of surface. The liquids surface relatively quickly passes to equilibrium form when free energy is minimum. Debye’s temperature is rather arbitrary parameter. Its determination is based on some approach. However this parameter is introduced to the reference books and is broadly used in the crystal physics. Proposed strategy allows defining habit maximum size of nanoparticles on the base well known physics representations. The L–value is determined the bounder between sizes where it can be done value description and where it’s necessary to take into account the particle sizes.

Keywords

References

  1. Kittel, Ch. Introduction to solid state physics N.–Y. Chapman & Hall. LTD. 1956. – 683 p.
  2. Goodman, F.O., Wachman, H.Y. Dynamics of gas–surface scattering. Acad. Press. 1976. – 430 p.
  3. Jaycock, M.J., Parfitt, G.D. Chemistry of interfaces. John Wiley & Sons. 1982. – 273 p.
  4. Dunken, H.H., Lygin, V.I. Quantenchemie der Adsorption an Festkorperoberflachen. Leipzig. – 1978. – 293 p.
  5. Liopo, V.A., Nikitin, D.A., Struk, V.A., Nikitin, A.V. Nanomeasure mineral modificator of polymeric composite materials / X–ray diffraction & crystal chemistry of minerals. St. Petersburg. 2003. – P.339-340.
  6. Avdejchik S.V., Liopo V.A., Struk V.A. Bull. GrSU, Grodno, Belarus, 2003. p. 52-62.
  7. G.A. Gibson, S. Schultz. J. Appl. Phys. 73, 9, 4516 (1993).
  8. E.D. Dahlberg, J.G. Zhu. Phys. Today 4,34 (1995).
  9. Ajayan, P.M., Schadler, L.S., Braun, A.V. Nanocomposite science and technology. Willey. – VCY. Gmbh I Co KgaA. – 2004. – 230p.
  10. Avdejchik S.V. Polymer-silicate engineering materials: physicochemistry, technology, application. Edited by V.A. Struk, V.Ya. Scherba. Minsk. Tecnology. 2007. 431 p. (in Russian)
  11. Bragg, U., Claringbull, G. Crystalline structure of minerals. Moscow. 1967. 390 p. (in Russian)
  12. Belov, N.V. Structural mineralogy essays. Moscow. 1976. 344 p. (in Russian)
  13. Gusev, A.I. Nanomaterials, nanostructures, nanotechnologies. Moscow. Physmathlit. 2005. 416 p. (in Russian)
  14. Narai-Sabo, I. Inorganic crystal chemistry. Budapest. Pub. Of Hungary SA. 1969. 504 p.
  15. Liopo, V.A. Dimensional boundary between nano- and bulk states: theory and experiment. Grodno. GSU bulletin. Ser. 2. V. 2. 2007. pp. 65 – 71. (in Russian)
  16. Liopo, V.A. Micas crystals effect on the surface water films. Grodno. GSU bulletin. Ser. 2. V. 3. 2008. pp. 93 – 100. (in Russian)
  17. Harris, P.J.F. Carbon nanotubes and related structures. Cambridge. Univ. Press. 1999. - 320 p.
  18. Ouense, F., Pool, Ch. Nanotechnologies. Moscow. Technosphere. 2005. 334 p. (in Russian)
  19. Liopo, V.A. Definition of maximum size of nanoparticles. Grodno. GSU bulletin. Ser. 2. V. 1. 2007. pp. 50 – 56. (in Russian)

Article full text

Download PDF