MACHINES

Exergy analysis of a complex three-cylinder steam turbine at various loads

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 Department of maritime sciences, University of Zadar, Croatia

Abstract

Exergy analysis results for the Whole observed steam Turbine and each of her cylinders at three loads are presented in this paper.
Observation of all cylinders shows that LPC (Low Pressure Cylinder) is the dominant mechanical power producer at the highest observed load, while at partial loads the dominant mechanical power producer is IPC (Intermediate Pressure Cylinder). At Load 100% Whole Turbine produces mechanical power equal to 341.11 MW. IPC is the cylinder with the lowest exergy destruction and the highest exergy efficiency (higher than 95%) at all observed loads. The exergy efficiency of the Whole Turbine (WT) continuously increases during the increase in turbine load (WT exergy efficiency is the lowest at Load 50% and equal to 91.36%, while at the Load 100% WT exergy efficiency is the highest and equal to 92.93%). Analyzed turbine is projected to operate dominantly on the Load 100% because at that load the exergy efficiencies of all cylinders and Whole Turbine are higher than 91%.

Keywords

References

  1. Leyzerovich, A. S. (2021). Steam turbines for modern fossil-fuel power plants. River Publishers.
  2. Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)
  3. Abbaspour, H., Ehyaei, M. A., Ahmadi, A., Panahi, M., Abdalisousan, A., & Mirzohosseini, A. (2021). Energy, exergy, economic, exergoenvironmental and environmental (5E) analyses of the cogeneration plant to produce electrical power and urea. Energy Conversion and Management, 235, 113951. (doi:10.1016/j.enconman.2021.113951)
  4. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  5. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392- 403. (doi:10.1016/j.energy.2018.08.119)
  6. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
  7. Tanuma, T. (Ed.). (2017). Advances in steam turbines for modern power plants. Woodhead Publishing.
  8. Opriş, I., Cenuşă, V. E., Norişor, M., Darie, G., Alexe, F. N., & Costinaş, S. (2020). Parametric optimization of the thermodynamic cycle design for supercritical steam power plants. Energy Conversion and Management, 208, 112587. (doi:10.1016/j.enconman.2020.112587)
  9. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285-293. (doi:10.1016/j.applthermaleng.2019.01.003)
  10. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  11. Behrendt, C., & Stoyanov, R. (2018). Operational characteristic of selected marine turbounits powered by steam from auxiliary oil-fired boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  12. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  13. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  14. Mrzljak, V. (2018). Low power steam turbine energy efficiency and losses during the developed power variation. Tehnički glasnik, 12(3), 174-180. (doi:10.31803/tg- 20180201002943)
  15. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  16. Mrzljak, V., Lorencin, I., Anđelić, N., & Car, Z. (2021). Thermodynamic Analysis of a Condensate Heating System from a Marine Steam Propulsion Plant with Steam Reheating. Journal of Marine Science and Application, 20(1), 117-127. (doi:10.1007/s11804-021-00191-5)
  17. Medica-Viola, V., Pavković, B., & Mrzljak, V. (2018). Numerical model for on-condition monitoring of condenser in coal-fired power plants. International Journal of Heat and Mass Transfer, 117, 912-923. (doi:10.1016/j.ijheatmasstransfer.2017.10.047)
  18. Kanoğlu, M., Çengel, Y. A. & Dincer, I. (2012). Efficiency Evaluation of Energy Systems. Springer Briefs in Energy. (doi:10.1007/978-1-4614-2242-6)
  19. Mrzljak, V., Poljak, I., & Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 70(1), 59-77. (doi:10.21278/brod70105)
  20. Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
  21. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324- 328. (doi:10.1016/j.applthermaleng.2008.02.029)
  22. Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8-9), 1377-1385. (doi:10.1016/j.applthermaleng.2006.10.029)
  23. Tan, H., Shan, S., Nie, Y., & Zhao, Q. (2018). A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle. Cryogenics, 92, 84-92. (doi:10.1016/j.cryogenics.2018.04.009)
  24. Erdem, H. H., Akkaya, A. V., Cetin, B., Dagdas, A., Sevilgen, S. H., Sahin, B., ... & Atas, S. (2009). Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48(11), 2179- 2186. (doi:10.1016/j.ijthermalsci.2009.03.007)
  25. Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
  26. Hong, H., Peng, S., Zhang, H., Sun, J., & Jin, H. (2017). Performance assessment of hybrid solar energy and coal-fired power plant based on feed-water preheating. Energy, 128, 830-838. (doi:10.1016/j.energy.2017.04.050)
  27. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  28. Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)

Article full text

Download PDF