INNOVATIVE SOLUTIONS
Preparation of Ba0.95 Sm0.05 TiO3 Ceramics by Low Temperature Sol-Gel Method. Change in Dielectric Permittivity with Temperature
- 1 Bulgarian Academy of Sciences , ,Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre “Acad. A. Balevski”, Sofia, Bulgaria
- 2 Bulgarian Academy of Sciences, Institute of Solid State Physics, Sofia, Bulgaria
Abstract
Barium titanate ceramics doped with samarium were synthesized by low temperature sol-gel method. The physicochemical characterization of the samples was carried out by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). A pure BaTiO3 cubic phase was obtained. A technological regulation has been developed for the preparation of test samples .Monitoring ofthe relative dielectric permittivity of Sm-doped BaTiO3 ceramics with temperature changes (at frequency of 10 kHz) was realized.The resulting curve is typical of ferromagnetic material. The synthesized barium titanate ceramics possesses a high dielectric constant – 17500 at a Curie temperature Tc (65oC). The obtained values for the relative dielectric permittivity and Curie temperature of Sm-doped barium titanate ceramics are much better in comparison to conventionally non-doped BaTiO3-εr = 2000 and Tc = 120°C.
Keywords
References
- E. Gerasimov, A. Gerasimov, A. Atanasov, V. Toshev, D. Petkov, D. Ivanov, L. Georgieva, L. Pavlova, N. Drenska, P. Vinarov, P. Petrov, S. Buchvarov, S. Panova, S. Bagarov, S. Serbezov, S. Stefanov, S. Djambasov, T. Stoikova, T. Dackova, H. Berlinov, “Technology of ceramic products and materials”, Book (in Bulgarian), Edited by prof. Dr. Dipl. Ing. Svetlan Buchvarov, (IK “Sarasvati”, Sofia, 2003).
- M. M. Vijatović, J. D. Bobić, B. D. Stojanović, History and Challenges of Barium Titanate, Part I, Science of Sintering, 40 (2008), pp. 155-165.
- M. M. Vijatović, J. D. Bobić, B. D. Stojanović, History and Challenges of Barium Titanate, Part II, Science of Sintering, 40 (2008), pp. 235-244.
- L. Bozadjiev, G. Georgiev, Solid – phase synthesis of minerals of the group of the perovskite and related compounds, University of Mining and Geology “St. Ivan Rilski ” Yearbook, Volume 47, Scroll I, Geology and Geophysics, Sofia, 2004, pp. 33- 38.
- Hennings, D., Metzmacher, C., Schreinemacher, B. Defect chemistry and microstructure of hydrothermal barium titanate. J. Am. Ceram. Soc. 84, 179–82 (2001).
- Maria, T. B., Massimo, V., Zhao, Z., Vincenzo, B. & Nanni, P. Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem. Mater. 18, 4002–4010 (2006).
- Rabuffetti, F. A. & Brutchey, R. L. Structural evolution of BaTiO3 nanocrystals synthesized at room temperature. J. Am. Chem. Soc. 134, 9475–9487 (2012).
- L. Lakov, B. Jivov, K. Toncheva, „Development of Lead- Free Ceramic Materials for the Electronics. A Review”, Journal of Materials Science and Technology, Vol. 23, No 4, 2015, pp 345- 365.
- Huiling Gong, Xiaohui Wang, Shaopeng Zhang, Longtu Li, Synergistic effect of rare-earth elements on the dielectric properties and reliability of BaTiO3-based ceramics for multilayer ceramic capacitors, Materials Research Bulletin, 73, 2016. pp. 233-239.
- M. D. Waugh, "Design solutions for DC bias in multilayer ceramic capacitors", Electronic Engineering Times Europe August 2010, DESIGN & PRODUCTS, SPECIAL FOCUS: Passives Components, 2010, pp. 34-36.
- [6]. S. D. Hanin, A. I. Ader, V. N. Voroncov, O. V. Denisova, V. J. Holkin, Passive radio components, Part I., Electrical capacitors, UDK 621.37:621.319.4., Saint-Petersburg , 1998.
- P. K. Panda, Review: environmental friendly lead-free piezoelectric materials, Journal Mater Sci, 44 (2009).
- J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow and D. Damjanovic, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 92 [6], 1153, (2009).
- Lead-Free Piezoelectric, Editors: Shashank Priya and Sahn Nahm, Springer Science+Business Media, LLC, 2012.
- I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: Current status and perspectives, Journal of Advanced Dielectrics, Vol. 3, No. ,2 (2013).
- M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor, Sensors and Actuators, B 241, Chemical, 2017, pp. 1170-1178.
- Morrison, F. D., Sinclair, D. C., West, A. R. Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys. 86, 6355–6366, (1999).
- 21. Hirose, N., Skakle, J. M. S., West, A. R. Doping mechanism and permittivity correlations in Nd-doped BaTiO3. J. Electroceram. 3, (1999) pp. 233–238.
- Ganguly, M. et al. Characterization and rietveld refinement of A-site deficient lanthanum doped barium titanate. J. Alloy. Compd. 579, 473–484 (2013). 13. Li, Y., Yao, X. & Zhang, L. High permittivity neodymium-doped barium titanate sintered in pure nitrogen. Ceram. Int. 30, 1325–1328, (2004).
- Lin, M. F., Thakur, V. K., Tan, E. J. & Lee, P. S. Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J. Mater. Chem. 21, 16500 (2011).
- Ferrarelli, M. C., Tan, C. C. & Sinclair, D. C. Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3. J. Mater. Chem. 21, 6292, (2011).
- Ben, L. & Sinclair, D. C. Anomalous Curie temperature behavior of A-site Gd-doped BaTiO3 ceramics: The influence of strain. App. Phys. Lett. 98, 092907 (2011).
- 25. Zhang, W., Cao, L., Su, G. & Liu, W. Influence of microstructure on dielectric properties of Nd-doped barium titanate synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron. 24, 1801–1806, (2013).
- Dawson, J. A., Sinclair, D. C., Harding, J. H. & Freeman, C. L. A-site strain and displacement in Ba1-xCaxTiO3 and Ba1-xSrxTiO3 and the consequences for the Curie temperature. Chem. Mater. 26, 6104–6112, (2014).
- Rabuffetti, F. A., Culver, S. P., Lee, J. S. & Brutchey, R. L. Local structural investigation of Eu3+ −doped BaTiO3 nanocrystals. Nanoscale 6, 2909–2914, (2014).
- Il Jeong Park and Young Ho Han, „Effects of Synthesized Method on the Properties of Sm-doped BaTiO3”, Met. Mater. Int., Vol. 20, No. 6 (2014), pp. 1157-1161.
- Qiaomei Sun, Qilin Gu, Kongjun Zhu, Rongying Jin, Jinsong Liu, Jing Wang, Jinhao Qiu, Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate, www.nature.com, Scientific reports, 7:42274, Published 13 February 2017, pp. 1-8
- Raengthon, N., DeRose, V. J., Brennecka, G. L. & Cann, D. P. Defect mechanisms in high resistivity BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. Appl. Phys. Lett. 101, 112904 (2012).
- Hu, W. et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater. 12, 821– 826, (2013).
- 34. Freeman, C. L. et al. Energetics of donor-doping, metal vacancies, and oxygen-loss in A-site rare-earth-doped BaTiO3. Adv. Funct. Mater. 23, 3925–3928 (2013).
- Lu, D. Y. & Cui, S. Z. Defects characterization of Dy-doped BaTiO3 ceramics via electron paramagnetic resonance. J. Eur. Ceram. Soc. 34, 2217–2227, (2014).
- Che R.X., Gao H., Zhao H.B., Fang J.X., Developing history and present situation of sol-gel science, Journal of Yunnan University, 2005, 27(3A), pp. 378-383
- Wang J., Li Ch., Xu B., Basic Principle, Advance and Current Application Situation of Sol-Gel Method, Chemical industry and engineering, 2009, 26(3), pp. 273-277.
- M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza,G. A. Rossetti, and J. Rödel BaTiO3-based piezoelectrics: Fundamentals, Current status, and perspectives Appl. Phys. Rev. 4, 041305 (2017); https://doi.org/10.1063/1.4990046,
- Q. Liu, J. Liu , D. Lu, W. Zheng Colossa ldielectric behavior rand relaxation in Nd-doped BaTiO3 at low temperature, Ceramics International (2018), https://doi.org/10.1016/j.ceramint.2018.01.181