Preparation of Ba0.95 Sm0.05 TiO3 Ceramics by Low Temperature Sol-Gel Method. Change in Dielectric Permittivity with Temperature

  • 1 Bulgarian Academy of Sciences , ,Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre “Acad. A. Balevski”, Sofia, Bulgaria
  • 2 Bulgarian Academy of Sciences, Institute of Solid State Physics, Sofia, Bulgaria


Barium titanate ceramics doped with samarium were synthesized by low temperature sol-gel method. The physicochemical characterization of the samples was carried out by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). A pure BaTiO3 cubic phase was obtained. A technological regulation has been developed for the preparation of test samples .Monitoring ofthe relative dielectric permittivity of Sm-doped BaTiO3 ceramics with temperature changes (at frequency of 10 kHz) was realized.The resulting curve is typical of ferromagnetic material. The synthesized barium titanate ceramics possesses a high dielectric constant – 17500 at a Curie temperature Tc (65oC). The obtained values for the relative dielectric permittivity and Curie temperature of Sm-doped barium titanate ceramics are much better in comparison to conventionally non-doped BaTiO3-εr = 2000 and Tc = 120°C.



  1. E. Gerasimov, A. Gerasimov, A. Atanasov, V. Toshev, D. Petkov, D. Ivanov, L. Georgieva, L. Pavlova, N. Drenska, P. Vinarov, P. Petrov, S. Buchvarov, S. Panova, S. Bagarov, S. Serbezov, S. Stefanov, S. Djambasov, T. Stoikova, T. Dackova, H. Berlinov, “Technology of ceramic products and materials”, Book (in Bulgarian), Edited by prof. Dr. Dipl. Ing. Svetlan Buchvarov, (IK “Sarasvati”, Sofia, 2003).
  2. M. M. Vijatović, J. D. Bobić, B. D. Stojanović, History and Challenges of Barium Titanate, Part I, Science of Sintering, 40 (2008), pp. 155-165.
  3. M. M. Vijatović, J. D. Bobić, B. D. Stojanović, History and Challenges of Barium Titanate, Part II, Science of Sintering, 40 (2008), pp. 235-244.
  4. L. Bozadjiev, G. Georgiev, Solid – phase synthesis of minerals of the group of the perovskite and related compounds, University of Mining and Geology “St. Ivan Rilski ” Yearbook, Volume 47, Scroll I, Geology and Geophysics, Sofia, 2004, pp. 33- 38.
  5. Hennings, D., Metzmacher, C., Schreinemacher, B. Defect chemistry and microstructure of hydrothermal barium titanate. J. Am. Ceram. Soc. 84, 179–82 (2001).
  6. Maria, T. B., Massimo, V., Zhao, Z., Vincenzo, B. & Nanni, P. Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem. Mater. 18, 4002–4010 (2006).
  7. Rabuffetti, F. A. & Brutchey, R. L. Structural evolution of BaTiO3 nanocrystals synthesized at room temperature. J. Am. Chem. Soc. 134, 9475–9487 (2012).
  8. L. Lakov, B. Jivov, K. Toncheva, „Development of Lead- Free Ceramic Materials for the Electronics. A Review”, Journal of Materials Science and Technology, Vol. 23, No 4, 2015, pp 345- 365.
  9. Huiling Gong, Xiaohui Wang, Shaopeng Zhang, Longtu Li, Synergistic effect of rare-earth elements on the dielectric properties and reliability of BaTiO3-based ceramics for multilayer ceramic capacitors, Materials Research Bulletin, 73, 2016. pp. 233-239.
  10. M. D. Waugh, "Design solutions for DC bias in multilayer ceramic capacitors", Electronic Engineering Times Europe August 2010, DESIGN & PRODUCTS, SPECIAL FOCUS: Passives Components, 2010, pp. 34-36.
  11. [6]. S. D. Hanin, A. I. Ader, V. N. Voroncov, O. V. Denisova, V. J. Holkin, Passive radio components, Part I., Electrical capacitors, UDK 621.37:621.319.4., Saint-Petersburg , 1998.
  12. P. K. Panda, Review: environmental friendly lead-free piezoelectric materials, Journal Mater Sci, 44 (2009).
  13. J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow and D. Damjanovic, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 92 [6], 1153, (2009).
  14. Lead-Free Piezoelectric, Editors: Shashank Priya and Sahn Nahm, Springer Science+Business Media, LLC, 2012.
  15. I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: Current status and perspectives, Journal of Advanced Dielectrics, Vol. 3, No. ,2 (2013).
  16. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor, Sensors and Actuators, B 241, Chemical, 2017, pp. 1170-1178.
  17. Morrison, F. D., Sinclair, D. C., West, A. R. Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys. 86, 6355–6366, (1999).
  18. 21. Hirose, N., Skakle, J. M. S., West, A. R. Doping mechanism and permittivity correlations in Nd-doped BaTiO3. J. Electroceram. 3, (1999) pp. 233–238.
  19. Ganguly, M. et al. Characterization and rietveld refinement of A-site deficient lanthanum doped barium titanate. J. Alloy. Compd. 579, 473–484 (2013). 13. Li, Y., Yao, X. & Zhang, L. High permittivity neodymium-doped barium titanate sintered in pure nitrogen. Ceram. Int. 30, 1325–1328, (2004).
  20. Lin, M. F., Thakur, V. K., Tan, E. J. & Lee, P. S. Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J. Mater. Chem. 21, 16500 (2011).
  21. Ferrarelli, M. C., Tan, C. C. & Sinclair, D. C. Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3. J. Mater. Chem. 21, 6292, (2011).
  22. Ben, L. & Sinclair, D. C. Anomalous Curie temperature behavior of A-site Gd-doped BaTiO3 ceramics: The influence of strain. App. Phys. Lett. 98, 092907 (2011).
  23. 25. Zhang, W., Cao, L., Su, G. & Liu, W. Influence of microstructure on dielectric properties of Nd-doped barium titanate synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron. 24, 1801–1806, (2013).
  24. Dawson, J. A., Sinclair, D. C., Harding, J. H. & Freeman, C. L. A-site strain and displacement in Ba1-xCaxTiO3 and Ba1-xSrxTiO3 and the consequences for the Curie temperature. Chem. Mater. 26, 6104–6112, (2014).
  25. Rabuffetti, F. A., Culver, S. P., Lee, J. S. & Brutchey, R. L. Local structural investigation of Eu3+ −doped BaTiO3 nanocrystals. Nanoscale 6, 2909–2914, (2014).
  26. Il Jeong Park and Young Ho Han, „Effects of Synthesized Method on the Properties of Sm-doped BaTiO3”, Met. Mater. Int., Vol. 20, No. 6 (2014), pp. 1157-1161.
  27. Qiaomei Sun, Qilin Gu, Kongjun Zhu, Rongying Jin, Jinsong Liu, Jing Wang, Jinhao Qiu, Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate,, Scientific reports, 7:42274, Published 13 February 2017, pp. 1-8
  28. Raengthon, N., DeRose, V. J., Brennecka, G. L. & Cann, D. P. Defect mechanisms in high resistivity BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. Appl. Phys. Lett. 101, 112904 (2012).
  29. Hu, W. et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater. 12, 821– 826, (2013).
  30. 34. Freeman, C. L. et al. Energetics of donor-doping, metal vacancies, and oxygen-loss in A-site rare-earth-doped BaTiO3. Adv. Funct. Mater. 23, 3925–3928 (2013).
  31. Lu, D. Y. & Cui, S. Z. Defects characterization of Dy-doped BaTiO3 ceramics via electron paramagnetic resonance. J. Eur. Ceram. Soc. 34, 2217–2227, (2014).
  32. Che R.X., Gao H., Zhao H.B., Fang J.X., Developing history and present situation of sol-gel science, Journal of Yunnan University, 2005, 27(3A), pp. 378-383
  33. Wang J., Li Ch., Xu B., Basic Principle, Advance and Current Application Situation of Sol-Gel Method, Chemical industry and engineering, 2009, 26(3), pp. 273-277.
  34. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza,G. A. Rossetti, and J. Rödel BaTiO3-based piezoelectrics: Fundamentals, Current status, and perspectives Appl. Phys. Rev. 4, 041305 (2017);,
  35. Q. Liu, J. Liu , D. Lu, W. Zheng Colossa ldielectric behavior rand relaxation in Nd-doped BaTiO3 at low temperature, Ceramics International (2018),

Article full text

Download PDF