NUMERICAL ANALYSIS OF IN-CYLINDER PRESSURE AND TEMPERATURE CHANGE FOR NATURALLY ASPIRATED AND UPGRADED GASOLINE ENGINE

  • 1 Faculty of Engineering, University of Rijeka, Croatia

Abstract

The paper presents numerical analysis of in-cylinder pressure and temperature change for naturally aspirated gasoline engine and two of its upgrades – upgrade with turbocharger only and upgrade with turbocharger along with air cooler. Numerical analysis was performed with 0D (zero-dimensional) numerical model. In-cylinder temperatures, for each engine rotational speed, are the highest for engine upgraded only with the turbocharger. The highest observed in-cylinder temperature of turbocharged engine was obtained at 5000 rpm and amounts 2542.4 °C. In-cylinder pressures are the highest for engine upgraded with turbocharger and air cooler for all rotational speeds except the highest one. The highest observed in-cylinder pressure of a turbocharged engine with air cooler was obtained at 5000 rpm and amounts 129.7 bars. Presented analysis showed that the selected air cooler can be improved at highest engine rotational speed.

Keywords

Article full text

Download PDF