Exergy analysis of three cylinder steam turbine from supercritical coal-fired power plant

  • 1 Faculty of Engineering, University of Rijeka, Croatia


In this paper is performed exergy analysis of three cylinder steam turbine from the supercritical coal-fired power plant. Exergy analysis parameters were calculated for the whole turbine and each cylinder for the ambient temperature range between 5 °C and 45 °C. The dominant mechanical power producer of all the cylinders is a low pressure cylinder (LPC) which produces 262.06 MW of mechanical power. An increase in the ambient temperature increases exergy destructions and decreases exergy efficiencies of the whole turbine and each cylinder. Exergy analysis shows that LPC is a cylinder with the highest exergy destruction (between 24.67 MW and 28.24 MW) and the lowest exergy efficiency (between 82.27% and 84.16%) in comparison to the other cylinders. Exergy destruction of the whole observed turbine is between 67.85 MW and 77.62 MW, while the whole turbine exergy efficiency ranges between 89.47% and 90.67%. Inside the observed steam turbine, LPC is the most influenced by the ambient temperature change, therefore future research and possible optimization should be specifically based on this cylinder.



  1. Muhammad Ashraf, W., Moeen Uddin, G., Muhammad Arafat, S., Afghan, S., Hassan Kamal, A., Asim, M., ... & Krzywanski, J. (2020). Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency. Energies, 13(21), 5592. (doi:10.3390/en13215592)
  2. Muhammad Ashraf, W., Moeen Uddin, G., Hassan Kamal, A., Haider Khan, M., Khan, A. A., Afroze Ahmad, H., ... & Krzywanski, J. (2020). Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation. Energies, 13(21), 5619. (doi:10.3390/en13215619)
  3. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  4. Behrendt, C., & Stoyanov, R. (2018). Operational Characteristic of Selected Marine Turbounits Powered by Steam from Auxiliary Oil- Fired Boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  5. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285- 293. (doi:10.1016/j.applthermaleng.2019.01.003)
  6. Mrzljak, V., Poljak, I., & Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 70(1), 59-77. (doi:10.21278/brod70105)
  7. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/
  8. Mrzljak, V., & Poljak, I. (2019). Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads. NAŠE MORE: znanstveno-stručni časopis za more i pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
  9. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  10. Medica-Viola, V., Mrzljak, V., Anđelić, N., & Jelić, M. (2020). Analysis of Low-Power Steam Turbine With One Extraction for Marine Applications. NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(2), 87-95. (doi:10.17818/NM/2020/2.1)
  11. Noroozian, A., Mohammadi, A., Bidi, M., & Ahmadi, M. H. (2017). Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants. Energy conversion and management, 144, 351-360.
  12. (doi:10.1016/j.enconman.2017.04.067)
  13. Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of Marine Steam Turbine Conventional Exergy Analysis by Neural Network Application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)
  14. Tumanovskii, A. G., Shvarts, A. L., Somova, E. V., Verbovetskii, E. K., Avrutskii, G. D., Ermakova, S. V., ... & Lazarev, M. V. (2017). Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants. Thermal Engineering, 64(2), 83-96.
  15. (doi:10.1134/S0040601517020082)
  16. Viswanathan, R., Henry, J. F., Tanzosh, J., Stanko, G., Shingledecker, J., Vitalis, B., & Purgert, R. (2005). US program on materials technology for ultra-supercritical coal power plants. Journal of materials engineering and performance, 14(3), 281-292. (doi:10.1361/10599490524039)
  17. Kocijel, L., Poljak, I., Mrzljak, V., & Car, Z. (2020). Energy Loss Analysis at the Gland Seals of a Marine Turbo-Generator Steam Turbine. Tehnički glasnik, 14(1), 19-26. (doi:10.31803/tg-20191031094436)
  18. Surywanshi, G. D., Pillai, B. B. K., Patnaikuni, V. S., Vooradi, R., & Anne, S. B. (2019). 4-E analyses of chemical looping combustion based subcritical, supercritical and ultra-supercritical coal-fired power plants. Energy Conversion and Management, 200, 112050. (doi:10.1016/j.enconman.2019.112050)
  19. Yang, Y., Wang, L., Dong, C., Xu, G., Morosuk, T., & Tsatsaronis, G. (2013). Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant. Applied energy, 112, 1087-1099. (doi:10.1016/j.apenergy.2012.12.063)
  20. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  21. Škopac, L., Medica-Viola, V., & Mrzljak, V. (2020). Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 1-15. (doi:10.1080/01457632.2020.1744248)
  22. Tanuma, T. (Ed.). (2017). Advances in Steam Turbines for Modern Power Plants. Woodhead Publishing.
  23. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  24. Kanoğlu, M., Çengel, Y. A. & Dincer, I. (2012). Efficiency Evaluation of Energy Systems. Springer Briefs in Energy. (doi:10.1007/978-1-4614-2242-6)
  25. Mrzljak, V., Poljak, I., & Ţarković, B. (2018). Exergy analysis of steam pressure reduction valve in marine propulsion plant on conventional LNG carrier. NAŠE MORE: znanstveni časopis za more i pomorstvo, 65(1), 24-31. (doi:10.17818/NM/2018/1.4)
  26. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
  27. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  28. Nandini, M., Sekhar, Y. R., & Subramanyam, G. (2021). Energy analysis and water conservation measures by water audit at thermal power stations. Sustainable Water Resources Management, 7(1), 1-24. (doi:10.1007/s40899-020-00487-4)
  29. Mrzljak, V., Blecich, P., Anđelić, N., & Lorencin, I. (2019). Energy and Exergy Analyses of Forced Draft Fan for Marine Steam Propulsion System during Load Change. Journal of Marine Science and Engineering, 7(11), 381. (doi:10.3390/jmse7110381)
  30. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Exergy analysis of marine steam turbine labyrinth (gland) seals. Pomorstvo, 33(1), 76-83. (doi:10.31217/p.33.1.8)
  31. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392-403. (doi:10.1016/
  32. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
  33. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  34. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Multilayer Perceptron approach to Condition-Based Maintenance of Marine CODLAG Propulsion System Components. Pomorstvo, 33(2), 181-190. (doi:10.31217/p.33.2.8)
  35. Baressi Šegota, S., Lorencin, I., Ohkura, K., & Car, Z. (2019). On the Traveling Salesman Problem in Nautical Environments: an Evolutionary Computing Approach to Optimization of Tourist Route Paths in Medulin, Croatia. Pomorski zbornik, 57(1), 71-87. (doi:10.18048/2019.57.05)
  36. Anđelić, N., Baressi Šegota, S., Lorencin, I., Mrzljak, V., & Car, Z. (2021). Estimation of COVID-19 epidemic curves using genetic programming algorithm. Health Informatics Journal, 27(1), 1460458220976728. (doi:10.1177/1460458220976728)

Article full text

Download PDF